~		-
12	42	
w	76	w

Reg.	No
Nam	e

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2010

Second Semester

INTEGRAL CALCULUS AND MATRICES

(Complementary course to Physics/Chemistry/Petrochemicals/Geology

B.Sc. Food Science and Quality Control B.Sc. Computer Maintenance and Electronics)

Time: Three Hours

Total Weightage: 25

Part A (Objective Type Questions)

Answer all the questions.

Each bunch of 4 questions has weight 1.

1. 1 If f is integrable and $\int_{1}^{2} f(x) dx = -4$, $\int_{1}^{5} f(x) dx = 6$, find $\int_{1}^{5} f(x) dx$.

2 Express the limit $\lim_{\|p\|\to 0} \sum_{k=1}^n \sqrt{4-c_k^2} \Delta x_k$, where p is a partition of [0, 1] as a definite integral.

3 Find
$$\int_{0}^{5} x^{3/2} dx$$
.

4 Find
$$\frac{d}{dx} \int_{0}^{x} \frac{dt}{1+t^2}$$
.

II. 5 Give an example of non-integrable function on [0, 1].

6 Check whether $f(x) = x^2 + x^3$ is an even function.

7 The circle $x^2 + y^2 = a^2$ is rotated about the x-axis. What is the solid of revolution?

8 Find the length of the curve $x = \cos t$, y = t, $+\sin t$, $0 \le t \le \pi$.

III. 9 Define a continuously differentiable function.

10 Evaluate:

$$\int_{0}^{3} \int_{0}^{2} (4 - y^{2}) dy dx.$$

11 Consider the region bounded by the lines x = 0, y = 2x and y = 4. Express the regions area as an integrated double integral.

Turn over

12 Change the Cartesian integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx$ into an equivalent polar integral.

IV. 13 Find the rank of 1 1 0 0 1 CHA SURJUNIAN JAROSTHI LINE COMMISSION OF THE COMM

Reg. No

14 What are the characteristic value of 3I, where I is the identity matrix of order 3 × 3?

B.Sc. Ford Science and Quality Centrol B.Sc Comput

Berond Semester

- 15 What is the characteristic polynomial of the zero matrix of order 4 × 4?
- 16 Write the normal form of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight 1.

- 17. Use the Max-Min inequality to find upper and lower bounds for the value of $\int_{0}^{1} \frac{dx}{1+x^{2}}$.
- 18. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in [a, b].
- 19. Evaluate $\int_{-1}^{1} r \sqrt{1-r^2} dr.$

tition of 10, 11 as a definite integral.

- 20. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 21. Evaluate $\int_{0}^{3} \int_{0}^{2} (4 y^2) dy dx$
- 22. Find the average value of $f(x, y) = x \cos(xy)$ over the rectangle R: $0 < x < \pi, 0 \le y \le 1$.
- 23. Check whether the matrices $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ are equivalent.

24. Find the characteristic polynomial of
$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

- 25. Calculate the area bounded by the x-axis and the parabola $y = 4 x^2$.
- 26. Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3.
- 27. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.
- 28. Find the area enclosed by the cardioid $r = a (1 + \cos \theta)$.
- 29. Sketch the region of integration for the integral $\int_{0}^{b} \int_{0}^{\frac{a}{b}\sqrt{b^{2}-y^{2}}} xy \, dx \, dy$ and write an equivalent integral with the order or integration reversed.
- 30. Find all non-trivial solutions of:

$$2x_1 - x_2 + 3x_3 = 0$$
$$3x_1 + 2x_2 + x_3 = 0$$
$$x_1 - 4x_2 + 5x_3 = 0$$

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

- 31. Find the length of the curve $y = x^{3/2} : 0 \le x \le 1$.
- 32. Evaluate the integral $\int_{0}^{1} \int_{0}^{3-3x} \int_{0}^{3-3x-y} dzdydx$.
- 33. Given $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$. Use Cayley-Hamilton theorem to compute A^2 , A^3 , A^4 , A^{-1} , A^{-2} and A^{-3} .

 $(2 \times 4 = 8)$