Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2015

Second Semester

Complementary Course-Mathematics

INTEGRAL CALCULUS AND MATRICES

(Common for B.Sc. Physics, Chemistry, Petrochemicals, Geology, Food Science and Quality Control and Computer Maintenance and Electronics)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

1. Suppose
$$\int_{-3}^{0} g(t) dt = \sqrt{2}$$
. Find $\int_{-3}^{0} \frac{g(r)}{\sqrt{2}} dr$.

- 2. State mean value theorem for definite integrals.
- 3. Solve the initial value problem:

$$\frac{ds}{dt} = \cos t + \sin t, s(\pi) = 1.$$

- 4. Find the antiderivative of $\frac{5}{x^2}$.
- 5. Find $\frac{d}{dx} \int_{0}^{x} \frac{1}{1+t^2} dt$.
- 6. Write the formula for the length of a smooth curve $x = g(y), c \le y \le d$.
- 7. Write the surface area formula for revolution about y-axis, a smooth curve $x = g(y) \ge 0$ on [c, d].
- 8. State first form of Fubini's theorem.
- 9. What is a matrix polynomial?
- 10. Find the eigen value of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

 $(10 \times 1 = 10)$

Turn over

Part B

Answer any eight questions. Each question carries 2 marks.

11. Suppose
$$h$$
 is continuous and $\int_{-1}^{1} h(r) dr = 0$ and $\int_{-1}^{3} h(r) dr = 6$. Find $\int_{1}^{3} h(u) du$.

12. Evaluate
$$\int \sqrt{1+y^2} \cdot 2y \, dy$$
.

13. Find
$$\int x^2 \sin(x^3) dx$$
.

14. Find the area of the region between
$$y = 2x$$
 and the x-axis on the interval $[0,b]$.

15. Show that the value of
$$\int_{0}^{1} \sqrt{1 + \cos x} \, dx$$
 cannot be possible.

17. Find
$$\int_{\pi}^{2\pi} \int_{0}^{\pi} (\sin x + \cos y) \, dx \, dy$$
.

18. Find the area of the region R enclosed by the parabola
$$y = x^2$$
 and the line $y = x + 2$.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}.$$

20. Reduce
$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 4 & 1 & 4 & 7 \end{bmatrix}$$
 to the normal form.

21. Verify Cayley-Hamilton theorem for the matrix
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
.

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Find the average height of the paraboloid $z = x^2 + y^2$ over the square $0 \le x \le 2, 0 \le y \le 2$.
- 24. Evaluate $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z \, dx \, dy \, dz$
- 25. Evaluate $\int \frac{3x+2}{\sqrt{1-x^2}} dx$.
- 26. Find the area of the region between the x-axis and the graph of $f(x) = x^3 x^2 2x$, $-1 \le x \le 2$.
- 27. Find the area of the regions enclosed by the curves $x^3 y = 0$ and $3x^2 y = 4$.
- 28. Find the volume of the solid generated by revolving the regions bounded by the lines:

$$x = 0, y = -1, y = 1$$
 and the curve $x = \sqrt{5} y^2$ about y-axis.

29. Find the length of the curve:

$$x = \frac{y^{3/2}}{3} - y^{1/2}$$
 from $y = 1$ to $y = q$.

- 30. Calculate A⁴ using Cayley-Hamilton theorem if, $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$.
- 31. Show that the following system of equations are inconsistent:

$$x_1 + x_2 + 2x_3 - x_4 = 5$$

 $2x_1 + 3x_2 - x_3 - 2x_4 = 2$
 $4x_1 + 5x_2 + 3x_3 = 7$.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (i) A pyramid 3 m high has a square base that is 3 m on a side. The cross-section of the pyramid perpendicular to the attitude x_m down from the vertex is a square x_m on a side. Find the volume of the pyramid.
 - (ii) Find the area of the surface generated by revolving the curve : $y = x^3$, $0 \le x \le \frac{1}{2}$, about the x-axis.

Turn over

33. (i) Find the polar moment of inertia about the origin of a thin plate of density $\delta(x,y) = 1$ bounded by the quarter circle $x^2 + y^2 = 1$ in the first quadrant.

(ii) Evaluate
$$\int_{0}^{2} \int_{0}^{\sqrt{4-y^2}} (x^2 + y^2) dx dy$$
.

- 34. Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 35. (i) Solve the following system by determinants:

$$2x-5y+2z=2$$
$$x+2y-4z=5$$
$$3x-4y-6z=1.$$

(ii) Obtain the row-equivalent canonical matrix of :

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$$

 $(2 \times 15 = 30)$