B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2013

Second Semester

INTEGRAL CALCULUS AND MATRICES

(Complementary Course to Physics/Chemistry/Petrochemicals/Geology/Food Science and Quality Control and Computer Maintenance and Electronics)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

A bunch of four questions has weight 1.

- I. 1. Express $\|p\| \to 0$ $\sum_{k=1}^{n} 2C_k^3 \Delta x_k$, where p is a partition of [-1, 0] as a definite integral.
 - 2. State mean value theorem for definite integrals.
 - 3. Find the average value of $f(x) = x^2 1$ on $[0, \sqrt{3}]$.
 - 4. Find $\int_{-4}^{4} |x| dx$.
- II. 5. Find $\int_{\pi_4}^{\pi_2} \cot \theta \csc^2 \theta \ d\theta$
 - 6. Find the area between the curves $y = \sec^2 x$ and $y = \sin x$ from 0 to $\pi/4$.
 - 7. Find the volume of the solid generated by revolving the region between the y- axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$, about the y- axis.
 - 8. Find the formula for calculating the length of a smooth curve x = g(y), $c \le y \le d$.
- III. 9. Give an example of a smooth curve.
 - 10. State first form of Fubini's theorem.
 - 11. Find the area enclosed by lemniscate $\gamma^2 = 4\cos 2\theta$.

Turn over

- 12. Sketch the region of integration of $\int_{1}^{2} \int_{y}^{y^{2}} dx dy$.
- IV. 13. Find the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$.
 - 14. Write the eigen values of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
 - 15. If the eigen values of a matrix A are $\lambda_1, \lambda_2...\lambda_n$. Then what is the eigen value of A^2 .
 - 16. Find the characteristic polynomial of $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- 17. Suppose that $f(x) = \frac{d}{dx} \left[1 \sqrt{x} \right]$ and $g(x) = \frac{d}{dx} (x+2)$. Find $\int \left[f(x) g(x) \right] dx$ and $\int (x+f(x)) dx$.
- 18. Find $\frac{dy}{dx}$ if $y = \int_{1}^{x^2} \cos t \, dt$.
- 19. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 20. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at 45° angle at the center of the cylinder. Find the volume of the wedge.

- 21. Calculate $\iint_R \frac{\sin x}{x} dA$, where R is the triangle in the xy plane bounded by the x-axis, the line y = x and the line x = 1.
- 22. Find the limits of integration for integrating a function $f(r, \theta)$ over the region R that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1.
- 23. By reducing to the normal form find the rank of $\begin{bmatrix} 3 & 1 & 2 & 5 \\ -1 & 4 & 1 & -1 \\ 1 & 9 & 4 & 3 \end{bmatrix}$.
- 24. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$. Find the inverse of A.

 $(5\times1=5)$

Part C (Short Essays)

Answer any four questions. Each question has weight 2.

- 25. Use a definite integral to find the area of the region between y = 2x and the x-axis on the interval [0, b].
- 26. Find the area of the region enclosed by $y = 2 \sin x$ and $y = \sin 2x$, $0 \le x \le \pi$.
- 27. Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{3/2} 1$, $0 \le x \le 1$.
- 28. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-s^2}} 8t \ dt \ ds$ in the st plane.
- 29. Change the Cartesian integral into an equivalent polar integral and evaluate

$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} (x^2 + y^2) dx dy.$$

30. Show that the following system of equations are incosistent:

$$u - 2v + w - t + 1 = 0$$
$$3u - 2w + 3t + 4 = 0$$
$$5u - 4v + t + 3 = 0.$$

 $(4 \times 2 = 8)$

Part D (Essay Type)

Answer any two questions. Each question has weight 4.

- 31. Find the volume of the solid generated by revolving the region in the first quadrant bounded above by the line $y = \sqrt{2}$, below by the curve $y = \sec x$ tan x and on the left by the y-axis, about the line $y = \sqrt{2}$.
- 32. Find the volume of the region D enclosed by the surface $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 33. Using Cayley-Hamilton theorem S.T. $A^3-6A^2+11A-6I=0$ where $A=\begin{bmatrix}1&1&2\\0&2&2\\-1&1&3\end{bmatrix}$ and hence find A^{-1} .

 $(2 \times 4 = 8)$