E	64	92

(Pages: 4)

Reg.	No	

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2017

Second Semester

Complementary Course-Mathematics

INTEGRAL CALCULUS AND MATRICES

(Common for B.Sc. Physics, Chemistry, Petrochemicals, Geology, Food Science and Quality .

Control and Computer Maintenance and Electronics)

[2013 Admission onwards]

Time : Three Hours

Maximum Marks: 80

Part A

Answer all questions. Each question carries 1 mark.

- 1. Find $\int \sin^2 x \, dx$.
- 2. Evaluate $\int x \cos x \, dx$.
- 3. State Fundamental theorem of Calculus.
- Write the formula for the volume of a solid of revolution about y-axis.
- 5. Define a smooth function.
- 6. Write the formula for calculating the area of a closed bounded region in polar co-ordinates.
- 7. Write the formula for calculating the length of a smooth curve $x = g(y) c \le y \le d$.
- 8. Define rank of a matrix.
- 9. What is the characteristic equation of a matrix A.
- State Cayley-Hamilton theorem.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

11. Evaluate $\int \frac{2z \, dz}{\sqrt[3]{z^2 + 1}}$.

Turn over

12. Evaluate
$$\int_{-\pi/8}^{\pi/3} \frac{1 - \cos 2t}{2} dt$$
.

13. Suppose
$$\int_{1}^{3} f(x) dx = 5$$
. Find $\int_{1}^{2} \sqrt{3} f(z) dz$.

- 14. Find the area of the region coclosed by $x = y^2$ and x = y + 2.
- 15. Find the volume of the solid generated by revolving $y = x^3$, y = 0, x = 2 about the x-axis.
- 16. Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

17. Evaluate
$$\int_{0}^{1} \int_{2}^{1-2x} dy dx$$

- 18. Find the area of the region R enclosed by the parabola $y = x^2$ and the line y = x.
- 19. Evaluate $\int_0^1 \int_0^2 \int_0^{1-y} dz \, dx \, dy$.
- 20. If $A=\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, find A^2 using Cayley-Hamilton theorem.
- 21. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$.
- 22. What are the elementary transformations of a matrix.

$$(8 \times 2 = 16)$$

Part C

Answer any six questions. Each question carries 4 marks.

23. Express the solution of the initial value problem
$$\frac{dy}{dx} = \sec x$$
, $y(2) = 3$ interms of integrals.

24. Find the area of the region between the x-axis and the graph of $y = x^3 - x^2 - 2x$, $-1 \le x \le 2$.

- 25. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x-axis and the line y = x 2.
- 26. The region in the first quadrant enclosed by the parabola $y = x^2$, the y-axis and the line y = 1 is revolved about the line x = 3/2 to generate a solid. Find the volume of the solid.
- 27. Sketch the region of integration for the integral $\int_{0}^{2} \int_{x^2}^{2x} (4x+2) dy dx$ and write an equivalent integral with the order of integration reversed.
- 28. Find the average value of $f(x, y) = \sin(x + y)$ over the rectangle $0 \le x \le \pi$, $0 \le y \le \pi/2$.
- 29. Evaluate using polar integrals $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$.
- 30. Obtain the row equivalent canonical matrix of $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$
- 31. Show that if λ is a characteristic root of a non-singular matrix A, then λ^{-1} is a characteristic root of A^{-1} .

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Evaluate $\iint_{\rho} e^{x^3+y^3} dy dx$ where R is the semicircular region bounded by the x-axis and the curve $y = \sqrt{1-x^2}$.
 - (b) Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.

Turn over

- 33. (a) Find the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane z = f(x, y) = 3 x y.
 - (b) Evaluate $\int_0^2 \int_x^2 2y^2 \sin xy \, dy \, dx$.
- 34. (a) Find that area of the surface generated by revolving the curve $y=x^3$, $0 \le x \le \frac{1}{2}$ about the x-axis
 - (b) Show that if f is continuous on [a, b], $a \neq b$ and if $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in [a, b].
- 35. (a) Solve the system of equations:

$$x+y+z+w=0$$

$$x+y+z-w=4$$

$$z + y - z + w = -4$$

$$x-y+z+w=2.$$

(b) If
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$
. Find its eigen value and the corresponding eigen vectors.

 $(2 \times 15 = 30)$