E	6	1	2	1
	•		•	a.

(Pa	ges	:	2)

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Fourth Semester

Core Course-ELECTRICITY AND ELECTRODYNAMICS

(For the programme : B.Sc. Physics—Model I, B.Sc. Physics—Model II, B.Sc. Physics—EEM, B.Sc. Physics—Instrumentation)

(2013 Admission onwards)

Time: Three Hours

Maximum Marks: 60

Part A

Answer all questions.

1.	Average power taken by a pure capacitor is ————.
2.	Form factor is equal to peak factor in case of
3.	Under resonance condition the phase angle between voltage and current phases is
4.	For ideal tank circuit, the value of dynamic admittance is ———.
5.	Time constant of LR series circuit is ———.
6.	Poynting vector has the dimension ————
7.	Skin depth is proportional to ———— of o.
8.	In a delta network, each element has value R. The value of each element in an equivalent sitar network will be ——————————————————————————————————

 $(8 \times 1 \simeq 8)$

Part B

Answer any six questions. 2 marks each.

- 9. Obtain the RMS value of alternating current.
- State and explain Thevenin's theorem.
- 11. What is the average current during one positive (or negative) half cycle of sinusoidal AC?
- 12. What is power factor?
- 13. Define the intensity of an electric field,

Turn over

- 14. What do you understand by surface charge of a conductor?
- 15. What is the time constant of a series RC circuit?
- 16. State the boundary conditions for the components of magnetic field.
- 17. What is Maxwell's modification of Ampere's circuital law?
- 18. Discuss the merits of ballistic galvanometer.

 $(6 \times 2 = 12)$

Part C

Answer any four questions. 4 marks each.

- 19. If a battery of emf 100V is connected in series with an inductor of inductance 10mH, a capacitor of capacitance 0.005 μF and a resistor of resistance 100Ω, find the frequency of the oscillatory current and the final capacitor charge.
- A coil of inductance 2 mH and resistance 15Ω is connected in parallel with a capacitor of capacitance 0.001 μF, find the frequency at which the current from an AC supply source to this circuit is minimum.
- 21. Differentiate star and delta connections.
- 22. The successive deflections to the right and left of the mean position in the case of a BG are 25.0, 24.9 and 24.8 respectively. Calculate the logarithamic decrement.
- 23. What is the capacitance required to produce a resonant frequency of IMHz in a series LCR circuit containing an inductor of inductance 10mH and a resistor of resistance 10Ω ?
- 24. An LR circuit consists of L = 20 mH and R = 10W. Find the time taken to decrease the current to half of the maximum value.

 $(4 \times 4 = 16)$

Part D

Answer any four questions. 12 marks each.

- Discuss the theory of LR circuit when alternating voltage is applied to it. Obtain expressions for the current and impedance of the circuit.
- 26. Write an essay on Ballistic Galvanometer.
- 27. Define scalar and vector potentials. Show that Maxwell's equations can be expressed as two coupled second order differential equations in terms of scalar and vector potentials.
- 28. Explain the propagation of monochromatic plane waves in vacuum.