10	0	77	0	77
E		6		

(Pages: 4)

Reg. No	**
Name.	

B.Sc. DEGREE (C.B.C.S.S) EXAMINATION, MARCH/APRIL 2012

Fourth Semester

Core Course-ELECTRONICS

(Common for B.Sc. Physics Model I, B.Sc. Physics Model II, B.Sc. Physics—EEM and B.Sc. Physics—Instrumentation)

Time: Three Hours

Maximum Weight: 25

- Notes: 1. Time allotted for the examination is 3 hours.
 - Answer all questions in Part A, any five from Part B, any four from Part C and any two from Part D.
 - 3. Candidates can use scientific, non-programmable calculators / Mathematical tables.

Part A

Answer all questions.

This part contains 4 bunches of 4 objective/one answer type questions.

For each bunch, Grade A will be awarded if all the 4 answers are correct,

B for 3, C for 2, D for 1 and E for 0.

Weight 1 each for every bunch.

BUNCH 1

Choose the most appropriate alternative:

1.	The depletion region or space charge region or transition region in a semiconductor PN junction
	diode has:

(a) Electrons and holes.

(b) Positive ions and negative ions.

(c) Positive ions and electrons.

(d) No ions, electrons or holes.

2. The minority carrier concentration in a diode is largely a function of :

(a) Reverse biasing voltage.

(b) Forward biasing voltage.

(c) Temperature.

(d) The amount of doping.

3. In a Zener diode, large reverse current is due to :

(a) Collision.

(b) Presence of impurities.

(c) Rupture of bonds.

(d) Lower resistance in reverse biased region.

4. If the output voltage of a bridge rectifier is 100 V, the PIV of the diode will be :

(a) 100√2 V.

(b) 100π V.

(c) 50 πV.

(d) $\frac{200}{\pi}$ V

Turn over

			BUNCH	2		
5.		The main component responsible for lowering of gain in an RC coupled amplifier in low frequency range is :				
	(a)	Biasing system.	(b)	Resistor R _E .		
	(c)	Coupling capacitor C _C .	(d)	Transistor itself.		
6.	In cas	age is:				
	(a)	CB.	(b)	CE.		
	(c)	CC.	(d)	None of the above.		

- 7. Class AB operation is often used in power amplifiers in order to:
 - (a) Get maximum efficiency. (b) Remove even harmonics.
 - (c) Overcome cross-over distortion. (d) Reduce collector dissipation.
- 8. An ideal op-amp is used to make an inverting amplifier. The two input terminals of the op-amp are at the same potential because :
 - (a) The two input terminals are directly shorted internally.
 - (b) The open loop voltage gain of the op-amp is infinity.
 - (c) CMRR is infinity.
 - (d) Both (b) and (c).

BUNCH 3

- 9. An ideal amplifier is one which:
 - (a) Has infinite voltage gain.
 - (b) Responds only to signal at its input terminals.
 - (c) Has positive feedback.
 - (d) Gives uniform frequency response.
- Unique features of a CC amplifier circuit is that it :
 - (a) Steps up the impedance level.
 - (b) Does not increase signal voltage.
 - (c) Acts as an impedance matching device.
 - (d) All of the above.
- 11. If properly biased, JFET will act as a:
 - (a) Current controlled voltage source.
 - (b) Current controlled current source.
 - (c) Voltage controlled voltage source.
 - (d) Voltage controlled current source.

- 12. The only drawback of using negative feedback in amplifiers is that it involves :
 - (a) Gain stability.
- (b) Gain sacrifice.
- (c) Frequency dependence.
- (d) Temperature sensitivity.

BUNCH 4

- 13. If Barkhausen criterion is not fulfilled by an oscillator circuit, it will:
 - (a) Produce high-frequency whistles.
 - (b) Produce damped waves continuously.
 - (c) Becomes an amplifier.
 - (d) Stops oscillating.
- 14. The primary advantage of a crystal oscillator is that:
 - (a) It can oscillate at any frequency.
 - (b) It gives a high output voltage.
 - (c) Its frequency of oscillation remains almost constant.
 - (d) It operates on very low d.c. supply voltage.
- 15. A linear diode detector utilizes:
 - (a) Linear portion of static characteristics of diode.
 - (b) Linear portion of dynamic characteristics of diode.
 - (c) Square law portion of dynamic characteristics of diode.
 - (d) Rectification property of diode.
- 16. In the FM wave described by equation $v = 15 \sin (4 \times 10^8 t + 3 \sin 1100 t)$, the maximum frequency deviation is:
 - (a) 175 Hz.

(b) 525 Hz.

(c) 3 Hz.

(d) 58.33 Hz.

 $(4 \times 1 = 4)$

Part B (Short Answer Type Questions)

Answer any five questions.

Weight 1 each.

- 17. What are the different types of p-n junction capacitances? What are their causes?
- Distinguish between the centre tapped and bridge rectifiers.
- 19. Draw the circuit diagram of a voltage tripler using diodes.
- 20. Define, basically the three operating regions of a bipolar transistor?
- 21. Draw the h-parameter equivalent circuit for a cc configuration, giving typical parameter values.

Turn over

- 22. List the four types of negative feedbacks, giving their block schematics.
- 23. What is virtual ground in an op-amp circuit? What are the conditions to be satisfied to have the virtual ground in an op-amp circuit?
- Sketch and label the frequency spectrum of an AM wave when a 625 kHz carrier is modulated by audio waves of 50 Hz to 5 kHz signal.

 $(5 \times 1 = 5)$

Part C (Short Essays/Problems)

Answer any four questions. Weight 2 each.

- 25. A π filter in a full wave rectifier uses $C_1 = C_2 = 470 \,\mu\text{F}$ and L = 10 H. The load current is 300 mA at 100 V dc. Calculate the ripple factor.
- 26. Determine (a) the applied voltage to achieve a forward current of 0.45 μA in a pn junction Si diode at T = 300 K, if the reverse saturation current is 1.0 nA. (b) If the reverse saturation current in a Ge diode is 10 μA, what current would result if the voltage in part (a) is applied in the forward direction?
- 27. Calculate the d.c. bias currents and voltages for a voltage divider bias circuit having R_1 = 40 K. R_2 = 10 K, R_C = 1.5 K, R_E = 2K, V_{CC} = 10V, β = 100 and V_{BE} = 0.7 V.
- 28. A germanium transistor has I_{CBO} = 10 μA , α = 0.98 and I_{C} = 1mA. Determine the emitter current and β of the transistor.
- 29. A Hartley oscillator is designed with L₁ = 2mH, L₂ = 20 μH and a variable capacitor. Determine the range of capacitance values, if the frequency of oscillation is varied between 950 and 2050 kHz.
- 30. A 500 W carrier is simultaneously amplitude modulated by two audio waves with modulation percentage of 50% and 80% respectively. What is the total sideband power radiated?

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions. Weight 4 each.

- 31. With a neat circuit diagram, describe how a Zener shunt voltage regulator provides voltage regulation against variations in the input voltage and output current? Design the circuit for an output voltage of 5V, to load upto a maximum of 50 mA.
- Draw the CE amplifier circuit. Sketch its h-parameter equivalent circuit and derive expressions
 for its voltage and current gains, input and output resistances.
- 33. With a circuit diagram, explain how sustained sinusoidal oscillations are produced in a RC phase-shift oscillator? Explain the function of each component in the circuit.

 $(2 \times 4 = 8)$