E	2504
A.d	AUU X

(P	ages	:	4)
----	------	---	----

Reg.	No
Mam	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2011

First Semester

Core Course - METHODOLOGY IN PHYSICS

(Common for B.Sc. Physics (Model – I), B.Sc. Physics (Model – II), B.Sc. Physics – Electronic Equipment Maintenance, B.Sc. Physics – Instrumentation)

Time: Three Hours Maximum Weight: 25

Answer all questions in Part A.

This contain four bunches of four objective questions.

For each bunch, Grade A will be awarded if all the A answers are correct, A by A by A by A by A and A by A by A answers are correct, A by A by A by A and A by A answers are correct,

Answer any five questions from Part B, any four from Part C and any two from Part D.

Candidates can use Clark's tables and Scientific non-programmable calculators.

Part A (Objective Type)

Weight 1 for each bunch.

BUNCH I

1.	The amount of mustard dispensed from a machine at The Hotdog Emporium is normally
	distributed with a mean of 0.9 ounce and a standard deviation of 0.1 ounce. If the machine
	is used 500 times, approximately how many times will it be expected to dispense 1 or more
	ounces of mustard?

(a) 5

(b) 16

(c) 80

(d) 100

- In a micrometer the shiny cylindrical part that the thimble causes to move towards the anvil is called:
 - (a) Spindle.

(b) Sleeve.

(c) Screw.

- (d) Ratchet stop.
- 3. The control segment of a space segment consists of:
 - (a) A master control station.
 - (b) Four dedicated ground antennas.
 - (c) Six dedicated monitor stations.
 - (d) All of the above.

Turn over

4:	S. Chandras	ekhar was awarded Nobel p	prize in						
	(a)	1979.	(b)	1983.					
	(c)	1989.	(d)	1980.					
		Bund	ен П						
5. If a train is to move with velocity of light, its length would be:									
	(a)	Infinite.	(b)	Unchanged.					
	(c)	Zero.	(d)	Half the original.					
6.	me depends on :								
	(a)	Amplitude.	(b)	Length.					
	(e)	Mass of pendulum.	(d)	'g'					
7.	7. If 'I' is the length of a simple pendulum and 'T' its period, the 'g' is given by :								
	(a)	(4π ² 1)/Γ ²	(b)	$2\pi/(\sqrt{1/t})^2$					
	(c)	2πl/t	(d)	$(4\pi t^2)/t^2$					
8. Which of the following instrument will you use to measure the radius the radius of a thin									
	copper wire. (a)		(b)	Meter scale.					
	(c)	Sonar.		Laser range finder.					
		conar.	in	Daser range mider.					
		Bunc	нШ						
Stat	e whether the	following statements are t	rue or fa	dse:					
9.	9 measures time more precisely.								
10.	. The instrument which can measure both current and voltage								
11.	I can be used to determine the distance of earth to a distant star directly with accurate								
	astrometry.								
12.	2. The full form of GPS is								

BUNCH IV

Match the following:

A B

13. Galileo - Observation and analysis of sunspots

Heisenberg – Nano technology.

Maxwell – Quantum mechanics.

16. Richard Feynmann - Classical electromagnetic theory.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions.

Weight 1 each.

- 17. What are the limitations of a sun dial measuring time?
- 18. Write notes on passive and active sonars.
- 19. What do you mean by standard deviation? How can this be used in error reporting?
- 20. What are the contributions of S.N. Bose towards physics?
- 21. Explain how electricity magnetism and optics can be unifies.
- 22. Why is the invention of semiconductors considered revolutionary?
- 23. Discuss the working of an ammeter.
- 24. How does error propagate when we are dealing with powers?

 $(5 \times 1 = 5)$

Part C (Short Essay/Problems)

Answer any four questions. Weight 2 each.

- 25. Convert the errors in the following measurements of the velocities of two carts on a track into fractional errors and per cent errors (a) v = 55 plus or minus 2 cm/s (b) u = -20 plus or minus 2 cm/s. (c) a cart's kinetic energy is measured as 4.58 plus or minus 2%.
- 26. A student measures gravity experimentally by measuring the time t for a stone to fall from a height h above the ground after making so many trials. She concludes that T = 1.6 plus or minus 0.1 s.

h = 46.2 plus or minus 0.3 ft.

She calculated g as

 $g = 2h/t^2 = 2 \times 46.2 \text{ ft/}(1.6s)^2 = 36.1 \text{ft/s}^2$

What is the uncertainly in her answer?

- 27. Find the effective mass and momentum corresponding to a photon of wavelength 649.3 nm.
- 28. If star A has a parallax angle about two times that of star B, what can we immediately determine about the relative distances of the two stars? Explain how we know this.
- Discuss how spectrometer verniers and scale and telescope arrangements can be used for angle measurement.
- 30. How can we estimate the errors with reading scales and errors of digital instruments?

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions.

Weight 4 each.

- 31. (a) Explain the uncertainties in measurement and need for error analysis.
 - (b) Explain how errors can be estimated.
- 32. Explain different methods for measurement of length.
- 33. Explain the development of different models of the universe.

 $(2 \times 4 = 8)$