Section.	460	HEAT .	-	_
E	6.0	and the	n	n
87.		-	е в	
-	And.	u	v	v

(Pages: 3)

Reg.	No
Name	6 0000 0000 0000 0000 0000 0000 0000 0

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2011

First Semester

DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(Complementary Course for Physics/Chemistry/Petrochemicals/Geology/Food Science and Quality Control and Computer Maintenance and Electronics)

Time: Three Hours

Maximum weight: 25

Part A (Objective Type Questions)

Answer all questions.

A bunch of four questions has weight 1.

I. 1 Find
$$\lim_{x\to\infty} \frac{(x+1)(2x+3)}{(x+2)(3x+4)}$$
.

2 State the Sandwich theorem.

3 If
$$y = \log(\log x)$$
 find $\frac{dy}{dx}$.

4 Differentiate:

$$e^x \cos(5x+3)$$
 w.r.to x.

- II. 5 Find the equation of the tangent line at (6, 4) on the graph of the function $f(x) = \frac{8}{\sqrt{x-2}}$.
 - 6 Find the slope of the y-axis.
 - 7 State the first derivative theorem for the local extreme values.
 - 8 Verify Rolle's theorem for the function $f(x) = \frac{x^3}{3} 3x$ in [-3,3].
- III. 9 Find the critical points of $f(x) = x^3 12x + 4$.
 - 10 In the Mean Value theorem $f(a+h) = f(a) + hf^{1}(a+\theta h)$, show that $\theta = \mathcal{H}$ if (x) is a qudratic expression.
 - 11 Define the partial derivative of z = f(x, y) w.r. to x.
 - 12 Write down the two dimensional Laplace's equation.
- IV. 13 State the chain rule for the function of two independent variables.

Turn over

14 Find
$$\frac{\partial^z f}{\partial x \partial y}$$
 if $f(x,y) = e^{xy}$,

- 15 Separate into real and imaginary parts the expression $\sin (\alpha + i\beta)$
- 16 Define the hyperbolic tangent of y.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight 1.

17 Prove that

$$\lim_{x\to 0}\frac{a^x-1}{x}=\log_e a.$$

- 18 Differentiate $\log (x^2 e^{mx})$ w.r. to x.
- 19 Give the geometrical meaning of the Rolle's theorem.
- 20 Find the function f(x) whose derivative is sinx and whose graph passes through the point (0, 2).
- 21 If z is a function of x and y and $x = e^{u} + e^{-v}$, $y = e^{-u} e^{-v}$ then prove that

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial v},$$

- 22 Show that $f(x,y) = \log \sqrt{x^2 + y^2}$ satisfies the Laplace's equation.
- 23 Use De Moivre's theorem to find the expansion of cos nθ in terms of the trigonometrical functions of 0.
- 24 Prove that $\sin(x+y) = \sin x \cos y + \cos x \sin y$.

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions, Each question has weight 2.

25 If
$$\sqrt{y} + x + \sqrt{y} - x = c$$
, show that $\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}$.

26 Differentiate $\log (xe^x)$ w.r. to $x \log x$.

- 27 State and prove the Mean Value theorem.
- 28 Find the critical points of

$$f(x) = x^{\frac{1}{3}}(x-4)$$

Identify the intervals on which f is increasing and decreasing. Also find the absolute extreme values.

29 Find
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial s}$ in terms of r and s if

$$w = x + 2y + z^2, x = \frac{r}{s}$$

 $y - r^2 + \log s, z = 2r.$

30 Separate into real and imaginary parts the quantity
$$\sin^{-1}(\cos\theta + i\sin\theta)$$
 where θ is real.

$$(4 \times 2 = 8)$$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

31 (i) Prove that
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n-1}$$

(ii) If
$$y = \left(x + \sqrt{1 + x^2}\right)^m$$
 show that $\left(1 + x^2\right) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - m^2y = 0$.

32 (i) If
$$Z = f(x + \alpha y) + \phi(x - \alpha y)$$
, prove that $\frac{\partial^2 z}{\partial y^2} = \alpha^2 \frac{\partial^2 z}{\partial x^2}$.

(ii) If
$$Z = \frac{\sin u}{\cos v}$$
 where $u = \frac{\cos y}{\sin x}$ and $v = \frac{\cos x}{\sin y}$, find $\frac{\partial z}{\partial x}$

33 Sum to infinity the series
$$1 + c \cos \alpha + c^2 \cos 2\alpha + \dots$$

$$(2 \times 4 = 8)$$