TO	1	0	0	a
E	1	U	o	U

(Pages: 3)

Reg.	No
neg.	INO

Name.....

B.Sc. DEGREE (CBCSS) EXAMINATION, NOVEMBER 2010

First Semester

Complementary Course-Mathematics

DIFFERENTIAL CALCULUS AND TRIGONOMETRY

(Complementary Course to Physics/Chemistry/Petro chemical/Geology Food Science and Quality Control/Computer Maintenance and Electronics)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

A bunch of 4 questions has weight 1.

I. 1.
$$\lim_{x \to 5} \frac{4}{x - 7} = ---$$

2. If
$$3-x^3 \le g(x) \le 3 \cos x$$
 for all x, then $\lim_{x\to 0} g(x) =$ ______.

3. The slope of the curve
$$y = x + \frac{2}{x}$$
 at $x = 1$ is ———.

4. If
$$y = x - \cot x$$
, then $\frac{dy}{dx} = ---$.

II. 5. If
$$x = 5t + 1$$
 and $y = t^2 + 1$, then $\frac{dy}{dx}$ at $t = 5$ is ————.

7. If
$$f'(x) = 2x$$
 for all x and $f(1) = 0$, then for all x , $f(x) = -$

8. Let
$$f$$
 be a function defined on an interval I and let x_1, x_2 be any points of I. Then f is said to be increasing on I if — whenever $x_1 < x_2$.

III. 9. The critical points of
$$f(x) = x^3 - 12x + 4$$
 are

10. Does
$$f(x) = x^{2/3}$$
, [-1, 8] statisfy the hypotheses of the mean value theorem? Justify.

Turn over

11. Find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ if $f(x, y) = x^2 - xy + y^2$.

12. Find
$$\frac{\partial^2 f}{\partial x \partial y}$$
 if $f(x, y) = e^{xy}$.

- IV. 13. Write the chain rule formula for $\frac{dz}{dt}$ where z = f(x, y), x = g(t), y = h(t).
 - 14. Write $\frac{\partial w}{\partial s}$ where w = f(x), x = g(r, s).
 - 15. Define the hyperbolic cosine of y.
 - 16. Express sin (iy) interms of a hyperbolic function.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight 1.

- 17. Let f(x) = x + 1 and $\varepsilon = 0.01$. Find a $\delta > 0$ such that for all x with $0 < |x 4| < \delta$, the inequality $|f(x) 5| < \varepsilon$ holds.
- 18. Does the curve $y = x^3$ ever have a negative slope? If so where? Give reasons for your answer.
- 19. Show that $f(x) = x^3 + 3x + 1$ has exactly one zero in [-1, 1].
- 20. Find the interval on which the function $f(x) = -x^3 + 2x^2$ is increasing.

21. Find
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 t}{\partial y \partial x}$ if $f(x, y) = x + y + xy$.

- 22. Use Chain rule to find $\frac{dw}{df}$, where $w = x^2y y^2$, $x = \sin t$, $y = e^t$.
- 23. Show that sinh(x + iy) has period $2\pi i$.
- Separate cosh(α + iβ) into its real and imaginary parts.

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

25. Applying the definition of limit show that
$$\lim_{x\to 1} \left(\frac{3}{2}x - 1\right) = \frac{1}{2}$$
.

26. If
$$ax^2 + 2hxy + by^2 = 1$$
, where a, b, h are constants, use implicit differentiation to show that:

$$(ax + hy)^3 \frac{d^2y}{dx^2} = (ab - h^2)(hx^2 + bxy + axy + hy^2).$$

- 27. Find the absolute maximum and minimum values of $f(x) = x^{4/3}$ in [-1, 8].
- 28. State and prove the mean value theorem.
- 29. Find $\frac{\partial w}{\partial u}$ as a function of u and v both by using by chain rule and by expressing w directly in terms of u and v before differentiating, given that w = xy + yz + xz, x = u + v, y = u v, z = uv.
- 30. Separate tan^{-1} ($\alpha + i\beta$) into its real and imaginary parts.

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

- 31. (a) Apply the definition of the derivative to show that derivative of a constant function is zero.
 - (b) If f has a derivative at x = c, prove that f is continuous at c.
 - (c) Show that f(x) = |x| is differentiable on $(-\infty, 0)$ and $(0, \infty)$ but has no derivative at x = 0.
- 32. (a) State the mixed derivative theorem.
 - (b) Find all the second order partial derivatives of the function :

$$f(x, y) = xy^2 + x^3y^3 + x^3y^4$$
.

Also compute f_{xy} at (1, 2).

33. Sum to infinity the series:

$$c\sin\alpha + \frac{c^2}{2}\sin 2\alpha + \frac{c^3}{3}\sin 3\alpha + \cdots$$