TA	00	00
E	04	83

78%		-	
C. Editor	Water.	-381	
(Pas	255	100	ì

Reg. No	******************
---------	--------------------

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2013

Fifth Semester

Core Course—CLASSICAL AND QUANTUM MECHANICS

(Common for Model I and Model II Physics, B.Sc. Physics EEM and B.Sc. Physics Instrumentation)

Tir

me	: Three H	lours	284		Maximum Weight: 25
		Part A (Ol	bjective Ty	pe Questions)	
			swer all qu ur question	estions. s carries a weight of 1.	
			BUNCH	I	
1.	The nu	mber of degrees of freedom of	f a rigid bod	ly is:	
	(a)	3.	(b)	2.	
	(c)	1.	(d)	6.	
2	Genera	alized co-ordinates are useful	for:		
	(a)	Holonomic constraints.	(b)	Non-holonomic constrain	ts.
	(c)	Both (a) and (b).	(d)	None of these.	
3	For a c	onservative system, the Ham	iltonian H i	s:	
	(a)	T – V.	(b)	T + V.	
	(c)	2T + V.	(d)	2T - V.	
4	Einstei	in's photoelectric equation is l	based on the	a law of conservation of :	
	(a)	Momentum.	(b)	Charge,	
	(c)	Mass.	(d)	Energy.	
			Bunch	п	
5	. The wa	ave velocity of a wave pachet	is called:		
	(a)	Phase velocity.	(b)	Wave velocity.	
	(c)	Group velocity.	(d)	None of these.	
6	. Compt	on effect is associated with :			
	(a)	α-rays.	(b)	β-rays.	
	(c)	X-rays.	(d)	+ve rays.	
7	. The w	avelength of a particle in a fin	ite potentia	al well is — that of t	the particle in a box.
	(a)	Longer than.	(b)	Smaller than.	
	(c)	Equal to.	(d)	None of these.	Turn over

W 78	-	-	-	0
141	ĸ	٠,	w	Q.
3.4	v	ďά	o	o

3540					1111
$\sqrt{2}$			es	~	·n \
ŧн	-53	σ	ρg		-51
	-	200	20		401

Reg.	No
------	----

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2013

Fifth Semester

Core Course-CLASSICAL AND QUANTUM MECHANICS

(Common for Model I and Model II Physics, B.Sc. Physics EEM and B.Sc. Physics Instrumentation)

Time : Three Hours Maximum Weight : 25

		Part A (Ob	jective Ty	ype Questions)	
			wer all quer question	vestions. s carries a weight of 1.	
		TELETY OR STORY	BUNCH	I	
1.	The nu	mber of degrees of freedom of	a rigid bod	ly is:	
	(a)	3.	(b)	2.	
	(c)	1.	(d)	6.	
2.	Genera	lized co-ordinates are useful f	or:		
	(a)	Holonomic constraints.	(b)	Non-holonomic constraints.	
	(c)	Both (a) and (b).	(d)	None of these.	
3.	For a c	onservative system, the Hami	ltonian H i	s;	
	(a)	T - V.	(b)	T + V.	
	(c)	2T + V.	(d)	2T - V.	
4.	Einstei	n's photoelectric equation is b	ased on the	e law of conservation of :	
	(a)	Momentum.	(b)	Charge,	
	(c)	Mass.	(d)	Energy.	
			BUNCH	II	
5.	The wa	we velocity of a wave pachet i	s called:		
	(a)	Phase velocity.	(b)	Wave velocity.	
	(c)	Group velocity.	(d)	None of these.	
6.	Compt	on effect is associated with :			
	(a)	α-rays.	(b)	β-rays.	
	(c)	X-rays.	(d)	+ve rays.	
7.	The wa	avelength of a particle in a fini	ite potentia	al well is that of the	particle in a box.
	(a)	Longer than.	(b)	Smaller than,	
	(c)	Equal to.	(d)	None of these.	Turn over
					14111 0101

8	The eig	genvalue of the momentum of	of the particle	in a box is
	1110000	Zero.	113/12/2019/04/21/14/2020	Continuous.
		Descrete.		
	18		Bunch I	
9.	Lineari	ity of Schrödinger equation		
		Fermats.		Superposition.
		Correspondence.		None of these.
10.	The va	lue of [x, px] is:		
		ih.	(b)	-ih.
	(c)	-½.	(d)	i/h.
11.	The qu	antum mechanical operator	for energy is	
	(a)	ih %t.	(b)	$-i\hbar \partial_{\partial x}$.
	(c)	- iħ ∇.	(d)	$-i\hbar\left(abla imes r ight) .$
12.	For a c	onservative force :		
	(a)	grade $F = 0$.	(b)	curl F = 0.
1	(c)	div F = 0.	(d)	F = ma.
			Bunch 1	v
ll in	the blan	iks:		
13.	The de	-Borgie wavelength of an el	ectron havin	g a kinetic energy of 10 ev is ————.
14.	The ex	pectation value of energy is		
15.	The La	grangian formulation,	are in	troduced to eliminate the forces of constraints.
16.	The gr	oup velocity for a relativisti	c particle hav	ring a momentum 'p' and energy E is ————
				$(4 \times 1 = 4$
		- Part B (Sh	ort Answer	Type Questions)
		Ans	wer any five	questions.

Each question carries a weight of L

- 17. State and explain D'Alembert's Principle.
- 18. What is meant by the principle of least action?
- 19. What are constraints? Give an example.

- 20. State Uncertainty Principle.
- 21. What is the physical significance of a wave function?
- 22. Distinguish between wave velocity and grow velocity.
- 23. What is zero point energy?
- 24. Write a note on degeneracy.

 $(5 \times 1 = 5)$

Part C (Short Essays/Problems)

Answer any four questions. Each question carries a weight of 2.

- 25. Obtain an expression for the Lagrange's equation for one dimensional harmonic oscillator.
- 26. Deduce Einstein's photoelectric equations.
- 27. Find the expectation value $\langle x \rangle$ of the position of a particle trapped in a box.
- 28. Using the operator representation of $\hat{p} = -i\hbar \frac{d}{dx}$ show that $\hat{x} \hat{p} \hat{p} \hat{x} = i\hbar$.
- 29. Normalize the wave function $\psi(x) = e^{-\frac{x}{a}}$.
- 30. A harmonic oscillator is in the ground state. Where is probability density maximum? What is the maximum probability density?

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions.

Each question carries a weight of 4.

- 31. Starting from the angular momentum commutation relations, Obtain the eigenvalues of L^2 and L_z .
- 32. State and prove the Hamilton Principle for a conservative system.
- What is meant by Compton Effect? Derive an expression for the compton shift.

 $(2 \times 4 = 8)$