TO.	9	01	0
E	Ð,	41	4

(Pages: 2)

Reg.	No	
100000		

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

Fifth Semester

Core Course—CLASSICAL AND QUANTUM MECHANICS

Common for Model I and Model II B.Sc. Physics

(B.Sc. Physics E.E.M. and B.Sc. Physics Instrumentation)

[2013 Admission onwards]

Time: Three Hours

Maximum: 60 Marks

Part A

Answer all questions.

Each question carries 1 mark.

	In holonomic constraints, the conditions of constraints are expressible as equations connecting the ———————————————————————————————————		
2.	Hamilton's principle is a formulation of the laws of motion in configuration space.		
3.	The wave nature and — nature complement each other.		
4.	The change in — of photon during scattering is called Compton effect.		
5.	A probability must be a ——— real quantity.		
6.	. The functions that satisfy Schrodinger equations for the discrete energy — are called eigen functions.		
7.	The spacing of the energy levels is — for a harmonic oscillator.		
8.	The components of the angular momentum operator do not — among themselves.		
	$(8 \times 1 = 8)$		

Part B

Answer any six questions. Each question carries 2 marks.

- 9. What are generalized co-ordinates?
- 10. State the D Alembert's principle.
- 11. State the principle of least action.
- 12. What is Compton Effect?
- 13. What are operators?
- 14. What is meant by expectation value?
- 15. What is the significance of eigen values?

Turn over

- 16. What is phase velocity?
- 17. What is degeneracy? Explain.
- 18. Why there exists zero point energy?

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. Obtain Lagrange's equation from Hamilton's principle.
- 20. Find the differential equations of motion of a spherical pendulum using Lagrangain method.
- 21. Calculate the de Broglie wave length of an electron with kinetic energy 1eV.
- Λ hydrogen atom is 5.3 × 10⁻¹¹m in radius. Use the uncertainty principle to estimate the minimum energy an electron can have in this atom.
- 23. Find the expectation value < x > of the position of a particle trapped in a box L wide.
- 24. Bring out the angular momentum operators and their basic commutation relations.

 $(4 \times 4 = 16)$

Part D

Answer any two questions.

Each question carries 12 marks.

- 25. What are constraints? Derive Langragain equation for a non holonomic system.
- 26. Discuss the Davisson-Germer experiment and observe the conclusions.
- 27. Obtain the energy eigen values of a rigid rotator.
- 28. Obtain the energy spectrum of one dimensional harmonic oscillator.

 $(2 \times 12 = 24)$