Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2013

Fifth Semester

Core Course-DIGITAL ELECTRONICS

(Common for Model I and Mdel II B.Sc. Physics and B.Sc. Physics EEM)

Time: Three Hours Maximum Weight: 25

Part A

Answer all questions.

Objective type questions, weight 1 for each bunch

		Objective type qu	estions, we	eight 1 for each bunch.	
			Bunch	I	
1.	Binary	number systems uses :			
	(a)	2 only.	(b)	0 and 1.	
	(c)	1 and 2.	(d)	1 only.	
2.	The con	mplement of a variable is always	ays.		
	(a)	0.	(b)	1.	
	(c)	Equal to the variable.	(b)	Inverse of the variable.	
3.	Which	one of the following is not a v	alid rule in	Boolean algebra :	Dear stribed?
	(a)	A + 1 = 1.	(b)	$A = A^c$.	
	(c)	AA = A.	(d)	A + 0 = A.	
4.	An exa	mple of a data storage device	is:		
	(a)	Logic gate.	(b)	Counter.	
	(c)	Register.	(d)	Full adder.	
			BUNCH	П	
5.	Asynch	ronous counters are known a	8:		dental execute of the
	(a)	Ripple counter.	(b)	Decade counter.	
	(c)	Ring counter.	(d)	Modulus counter.	
6.	The mo	ost suitable gate to check whe	ther the nu	umber of 1's in a digital w	ord is even or odd is:
	(a)	NAND.	(b)	XOR.	all to be a
	(c)	NOR.	(d)	NOT.	

7.	The bir	ary number 10101 is	equivalent to deci	mal number :			
	(a)	19.	(b)	12.			
	(c)	27,	(d)	21.			
8.	A feature that distinguishes the JK flip-flop from RS flip-flop is the :						
	(a)	Toggle condition.	(b)	Preset input.			
	(c)	Type of clock.	(d)	Clear input.			
			Bunch	Ш			
9.	Half adder is a logical circuit that performs binary addition of:						
	(a)	4 bits.	(b)	3 bits.			
	(c)	2 bits.	(d)	None of these.			
10.	BCD code for 7 is:						
	(a)	0011.	(b)	0101.			
	(c)	0100.	(d)	0111.			
11.	A group	p of 4 bits is called:					
	(a)	Byte.	(b)	Nibble			
	(c)	Radix.	(d)	Base.			
12.	The de	vice used to convert a l	oinary number to	a 7-segment display form	nat is:		
	(a)	Multiplexer.	(b)	Encoder			
	(c)	Decoder.	(d)	Register.			
			Bunch	IV			
13.	The un	iversal gate is :					
	(a)	NOT.	(b)	NAND.			
	(c)	OR.	(b)	XOR.			
14.	The purpose of including NOT gate is :						
	(a)	Inverting.	(b)	Non inverting.			
	(c)	Addition.	(d)	Subtraction.	Special property of		
15.	In BCD code a decimal digit is represented in :						
	(a)	2 bits.	(b)	3 bits.			
	(c)	1 bit.	(d)	4 bits.			
16.	A mult	iplexer circuit consists	of:				
	(a)	Only one output.	(b)	2 or more output.			
	(c)	No output.	(d)	All the above.			

Part B

Answer any five questions.

Short answer questions - Weight 1 each.

- 17. What is a flip-flop? What is the use of clocks in flip-flops?
- 18. State and explain Duality theorem.
- 19. Convert the following to sum-of-products form :-
 - (a) $(A + B)(B^c + C)(A^c + C)$
 - (b) (B+CA)(C+A¢B)

20. Convert

- (a) Hexadecimal 3FAC to binary
- (b) Octal 72 to decimal
- 21. State and explain De Morgan's theorem.
- 22. What is meant by a redundant group?
- 23. What are the functions of multiplexers and demultiplexers?
- 24. What is race condition? How is it eliminated in JK flip-flop?

 $(5 \times 1 = 5)$

Part C

Answer any four questions.

Snort essay/problems - Weight 2 each.

- 25. Subtract using 2's complement method:
 - (a) 1011.11-1001.10
 - (b) 10110 10010
- 26. Explain using diagram, the working of Master-Slave JK flip-flop.
- 27. What are full adders? Draw the circuit diagram and summarize the circuit action using truth table.
- 28. Write the Boolean expression in sum-of-pro ducts form for a logic circuit that will have a high output when X = 0, Y = 0, Z = 1 and X = 1, Y = 1, Z = 0 and a low output for all other input states. Draw the bock diagram for this circuit. Construct the table of combinations of input output values and product terms.
- 29. Write a short note on registers. What is a buffer register?
- Convert the following truth table to corresponding Boolean expression using sum-of-products method and simplify the expression using Karnaugh map.

INPUT			OUTPUT
A	В	C	
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	-1	1

11-9-0

Part D (Essays)

Answer any two questions.
Weight 4 each.

- 31. Give an account of working of shift register.
- 32. Explain the working of D/A converter.
- 33. Describe with circuit diagram, the working of different types of counters.

 $(2 \times 4 = 8)$