10.7	478	4.3	145	per
841	ುಕ್	7.0	m.	m
18.54	4.3	2	ж.	4.0
_	-	_	-	April 1

(Pages: 2)

Reg.	No
	e

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

Fifth Semester

Core Course-DIGITAL ELECTRONICS

(Common for Model I and Model II B.Sc. Physics and B.Sc. Physics EEM)

(2013 Admission onwards)

Time: Three Hours

Maximum: 60 Marks

Part A

Answer all questions briefly. Each question carries 1 mark.

- 1. What is BCD code ?
- 2. What is the use a NAND gate?
- 3. Explain truth table.
- 4. What is a half adder?
- 5. State the advantages of a buffer register?
- 6. What is an XNOR gate?
- 7. What is clocked RS?
- 8. State the uses of decade counter.

 $(8 \times 1 = 8)$

Part B

Answer any six questions. Each question carries 2 marks.

- 9. How will you convert a binary number to decimal number?
- Convert 46.25₈ into decimal.
- 11. Give the truth table of AND gate with three inputs.
- 12. What is an XOR gate ? Explain.
- 13. Give the basic laws of Boolean algebra.
- 14. Explain the structure of Karnaugh map.
- 15. Briefly explain duality theorem.

Turn over

- 16. What is a four bit adder?
- 17. What is a synchronous binary counter? Explain.
- 18. What is DFFJK?

 $(6 \times 2 = 12)$

Part C

Answer four questions. Each question carries 4 marks.

- 19. Give an account on ASCII code. State the uses.
- 20. State and prove de Morgan's theorems.
- 21. Distinguish between half adder and full adder.
- 22. Bring out the IC digital logic families.
- 23. Discuss the working of demultiplexers.
- 24. Briefly explain the functioning of a A/D converter.

 $(4 \times 4 = 16)$

Part D

Answer two questions.

Each question carries 12 marks.

- 25. Perform the following additions and check the results in decimal.
 - (i) 1001.11 + 1011.01
- (ii) 101001 + 10010
- (iii) 10111.101 + 10001.11
- (iv) 1101.11 + 1011.101
- Design an AND-to-OR gate combinational network for the Boolean algebra expression ABCD + ABCD + ABCD + ABCD + ABCD + ABCD.
- 27. Discuss the working of a (i) Decoder and ; (ii) Encoder.
- 28. Discuss the operations of a BCD ripple counter.

 $(2 \times 12 = 24)$