8.45	4	77	13	08
D	1	7	О	o

(Pages: 2)

Reg.	No
Nam	B

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2015

Fifth Semester

Physics

Core Course-THERMAL AND STATISTICAL PHYSICS

(Common for Model I and Model II - B.Sc. Physics, B.Sc. Physics EEM and B.Sc. Physics Instrumentation)

[2013 Admissions]

Time: Three Hours

Maximum: 60 Marks

Part A

Answer all questions briefly. Each question carries 1 mark.

Fill up the blanks:

- 1. During an isothermal process ----- remains a constant.
- All the reversible engines working between the temperature limits have the same efficiency.
- 3. For the same compression ratio the efficiency of an Otto engine is more than a ----- engine.
- For a irreversible process the ——————————————always increase.
- 5. A black body completely absorbs heat radiations of all lengths.
- 6. Bosons are ----- particles.
- 7. MB distribution allows all the particles to access all ----- levels.

 $(8 \times 1 = 8)$

Part B

Answer any six questions. Each question carries 2 marks.

- 9. State and explain Carnot's theorem.
- 10. What is meant by absolute zero? Explain.
- 11. Obtain work done during an isothermal process.
- 12. Explain the change in entropy during a reversible process.
- Briefly explain adiabatic elasticity.
- 14. What is TS diagram? Explain.

Turn over

- 15. State and explain Rayleigh Jeans law.
- 16. What are micro states? Explain.
- 17. What is phase space ? Explain.
- 18. What is thermodynamic probability?

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. Calculate the work done during an isothermal expansion.
- 20. A Carnot's engine working between 127° C and 27° C. What is the thermal efficiency of the engine?
- Determine the change in entropy when 100 gram of ice at zero degree centigrade is converted into water at the same temperature.
- Calculate the maximum amount of energy lost per second by radiation by a sphere 10cm diameter at 227° C when placed in an enclosure at 27° C.
- 23. Obtain Clausius Clapeyron equation from Maxwell-Boltzmann law.
- 24. Compare FD and MB statistics.

 $(4 \times 4 = 16)$

Part D

Answer any two questions. Each question carries 12 marks.

- 25. Describe the working of a Carnot's heat engine. Derive an expression for its efficiency.
- 26. Describe with diagrams the working of a diesel engine and obtain the expression for efficiency.
- 27. Deduce the Maxwell equations and use them to obtain Tds equations.
- 28. Derive the MB distribution law.

 $(2 \times 12 = 24)$