107	0	2	-	0
E	O	Ð	o	O

(Pages: 4)

Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2014

Fifth Semester

Core Course-THERMAL AND STATISTICAL PHYSICS

(Common For Model I and Model II B.Sc. Physics, B.Sc. Physics-EEM and B.Sc. Physics-Instrumentations)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Objective type questions-Weight 1 for each bunch.

BUNCH I

Choose the most appropriate answer:

- 1. When a gas in a vessel expands, its internal energy decreases. The process involved is
 - (a) Irreversible.
 - (b) Reversible.
 - (c) Adiabatic.
 - (d) Isothermal.
- 2. For 100% efficiency of Carnot engine, the temperature of the sink should be
 - (a) 0°C.

(b) 0°K.

(c) 273°K.

- (d) 0°F.
- 3. Heat capacity of a substance is infinite. It means:
 - (a) Heat is given out.
 - (b) Heat is taken in or given out.
 - (c) No change in temperature whether heat is taken in or given out.
 - (d) None of these.
- Maxwell's law of distribution is (n; =)

(a)
$$\frac{g_i}{Ae^{-\beta\epsilon_i}}$$
.

(b)
$$\frac{g_i}{Ae^{\beta s_i}}$$

(c)
$$\frac{g_i}{Ae^{\beta \varepsilon_i} + 1}$$

(d)
$$\frac{g_i}{Ae^{\beta \epsilon_i}-1}$$

BUNCH II

Choose	the most	appropriate	answer
CHUUDE	FILE THOSE	appropriate	THISWEL

5.	Work	required	to	generate	lkcal	of	heat	is	+
----	------	----------	----	----------	-------	----	------	----	---

(a) 4.2 J.

(b) 4.2×10^7 J.

(c) $4.2 \times 10^3 J$.

(d) 42J.

6. Which of the following has the highest specific heat?

(a) Copper.

(b) Water

(c) Hydrogen.

(d) Silver.

7. Partition function of a perfect gas is Z = :

(a)
$$\frac{V}{h^3} (2\pi m kT)^{1/2}$$
.

(b)
$$\frac{V}{h^3} (2\pi m kT)^{3/2}$$
.

(c)
$$\frac{V}{h^3} (2\pi mkT)$$
.

(d)
$$\frac{V}{h^3} (2\pi mkT)^{-\frac{1}{2}}$$
.

8. Which of the following is not a Maxwell's relation?

$$(a) \quad \left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V.$$

(b)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$
.

(c)
$$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$
.

$$(d) \quad \left(\frac{\partial V}{\partial P}\right)_{\!\!T} \equiv -\!\left(\frac{\partial S}{\partial T}\right)_{\!\!P}.$$

Винсн ПІ

Choose the most appropriate answer:

- 9. A gas behaves as an ideal gas
 - (a) At very low pressure and high temperature.
 - (b) At high pressure and low temperature.
 - (c) At high pressure and high temperature.
 - (d) At low pressure and low temperature.
- 10. Phase space is divided into
 - (a) Groups.

(b) Subgroups.

(c) Sets.

(d) Cells.

 During the adiabatic expansion of 10 moles of a gas the internal energy decreases by 50J. Work done during the process is

(a) +50 J.

(b) -50 J.

(c) 0.

(d) + 100J.

- 12. First law of thermodynamics can be explained on the basis of
 - (a) Boyle's law.

(b) Maxwell's law.

(c) Charle's law.

(d) Joule's law.

BUNCH IV

Choose the most appropriate answer:

- 13. Which of the following is suitable for photons?
 - (a) Fermi-Dirac Statistics.
- (b) Bose-Einstein Statistics.
- (c) Maxwell-Boltzmann Statistics.
- (d) None of these.
- 14. The energy density $\frac{U}{V}$ of an ideal monatomic gas is related to its pressure P as :

(a)
$$\frac{U}{V} = 3P$$
.

(b)
$$\frac{U}{V} = \frac{3}{2}P$$
.

(c)
$$\frac{\mathbf{U}}{\mathbf{V}} = \frac{\mathbf{P}}{3}$$
.

(d)
$$\frac{U}{V} = \frac{5}{2} P$$
.

15. Quantum statistics approaches to classical statistics if:

(a)
$$\frac{g_i}{n_i} = 1$$
.

(b)
$$\frac{g_i}{n_i} = 1$$
.

(e)
$$\frac{g_i}{n_i} = 1$$
.

- (d) Never.
- 16. The value of γ for a molecule having n degrees of freedom is :

(a)
$$\gamma = 1 + \frac{2}{n}$$
.

(b)
$$\gamma = 1 + \frac{n}{2}$$
.

(c)
$$\frac{n+1}{2}$$
.

(d)
$$\frac{n-1}{2}$$
.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Short Answer Questions-Weight 1 each.

- 17. What is a reversible process?
- 18. Why white clothes in summer are comfortable?

Turn over

- 19. State and explain Planck's law of radiation?
- 20. Explain the principle of increase of entropy.
- 21. Describe the Helmholtz and Gibbs functions associated with a system.
- 22. What do you mean by statistical equilibrium?
- 23. State Fermi-Dirac distribution law.
- 24. What do you mean by microstates and macro states of a system of particles?

 $(5 \times 1 = 5)$

Part C

Answer any **four** questions. Short Essays/Problems-Weight 2 each.

- 25. Calculate the radiant emittance of a black body at 6000K. Stefan's constant = 5.672×10^{-8} Wm⁻²K⁻⁴.
- One mole of ideal gas at 28°C expands isothermally to three times the original volume. Calculate
 the work done.
- 27. Prove the thermodynamic relations

$$TdS = C_V d'T + T \left(\frac{\partial P}{\partial T}\right)_V dV$$

$$TdS = C_P dT - T \left(\frac{\partial V}{\partial T} \right)_P dP$$

- 28 A Carnot engine has the efficiency 50% when the temperature of the sink is 27°C. Find the change in temperature of the source to get an efficiency of 60%.
- Derive the expressions for the entropy and specific heat of an ideal monatomic gas in terms of partition function.
- The Fermi energy for lithium is 4.72eV at absolute zero. Calculate the number of conduction electrons in lithium.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Essays-weight 4 each.

- 31. Explain the working of a petrol engine. Obtain an expression for its efficiency.
- 32. Derive Maxwell's thermodynamic relations.
- 33. What is Gibbs paradox? How is it resolved?