Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

Fifth Semester

Core Course-THERMAL AND STATISTICAL PHYSICS

(Common For Model I, and Model II B.Sc. Physics, B.Sc. Physics EEM and B.Sc. Physics Instrumentation)

(2013 Admission onwards)

Time: Three Hours

Maximum: 60 Marks

Part A

Answer all questions briefly. Each question carries 1 mark.

Fill up the blanks:

- The work done during a cyclic process is ———.
- The ——— of a Carnot's reversible engine does not depend on the nature of the working substance.
- According to Kelvin-plank statement no engine can have efficiency.
- For a reversible cyclic process the change in is zero.
- In a process initial and final enthalpies are equal.
- Stefan's law is applicable for temperatures of a hot body.
- Fermions have integral spins.

 $(8 \times 1 = 8)$

Part B

Answer any six question.

Each question carries 2 marks.

- 9. What is an indicator diagram? Explain.
- 10. What is Carnot's cycle?
- 11. State and explain the third law of thermodynamics.
- 12. Explain an adiabatic process of your own interest.
- 13. Arrive at entropy during an irreversible process.
- 14. What is isothermal elasticity? Explain.
- Write down Clausisus Clapeyron equation and applications.

Turn over

- 16. State and explain Stefan Boltzman law.
- 17. What are macro states ? Explain.
- 18. What is Gibbs paradox?

 $(6 \times 2 = 12)$

Part C

Answer four questions. Each question carries 4 marks.

- 19. Calculate the work done during an adiabatic expansion.
- 20. Determine the efficiency of a Carnot's engine working between steam point and ice point.
- 21. Show that the slope of an adiabatic is greater than that of an isothermal.
- One gram molecule of a gas expands isothermally to four times its volume. Calculate the change in entropy in terms of gas constant.
- 23. Obtain the most probable speed of ideal gas molecules by MB law.
- 24. Compare FD and BE statistics,

 $(4 \times 4 = 16)$

Part D

Answer two questions. Each question carries 12 marks

- 25. Describe the working of a Carnot's heat engine. Derive an expression for its efficiency.
- 26. Describe with diagrams the operations of an Otto engine and support with theory.
- Deduce the Clausius Clapeyron equation and discuss the effect of change of pressure on the melting and boiling points.
- 28. Derive the expression for the FD distribution of electrons among the energy states in a metal.

 $(2 \times 12 = 24)$