D) Z	32	и.	7

(Pages: 3)

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2011

Fifth Semester

Core Course-PHYSICAL OPTICS AND PHOTONICS

(Common for (1) Model I Physics; (2) Model II Physics; (3) Physics — EEM and (4) Physics Instrumentation)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

Each bunch of four questions carries a weight of 1.

Bunch I

Choose the correct answer :

- 1. Interference is due to the superposition of :
 - (n) Coherent waves.
- (b) Waves of same amplitude.
- (c) Waves of different amplitude.
- (d) None of these.
- 2. The function of a zone plate is similar to that of a :
 - (a) Convex lens.

- (b) Concave lens.
- (c) Plano convex lens.
- (d) Plano concave lens.
- 3. Double refraction is associated with :
 - (a) Interference.

(b) Diffraction.

(c) Polarisation.

- (d) Refraction.
- 4. Through suitable pumping mechanism, the medium is taken into the state of :
 - (a) Lasing action.

(b) Population inversion.

(c) Equilibrium.

(d) None of these.

Bunch II

Fill in the blanks:

- In Newton's ring arrangement, the of the air film at the point of contact is zero and gradually increases as we move outward.
- When unpolarised light is incident at ———— angle on a smooth glass plate, the reflected light is totally polarized.
- 7. The ruby laser has a ————— level pumping scheme.
- Numerical aperture is the of the acceptance angle.

Turn over

Bunch III

State True or False :

- 9. In Michelson interferometer, circular fringes are produced with monochromatic light when the mirrors M₁ and M₂ are exactly perpendicular to each other.
- Joseph Fraunhofer used the first grating which consisted of a large number of parallel fine wires stretched on a frame.
- 11. The half-wave plate will not invert the handedness of elliptical or circular polarized light.
- 12. A semiconductor diode laser emits coherent light when it is reverse biased.

. Bunch IV

Match the following :-

13.	Zone plate	Calcite crystal	Graphein
14.	Double refraction	Fresnel	Cladding
15.	Holography	Core	Diffraction
16.	Sheath	Holos	Nichol prism.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question carries a weight of 1.

- 17., How can coherent sources be obtained in practice?
- 18. What do you mean by localized fringes?
- 19. What is a zone plate ? Explain.
- 20. What is pile of plates?
- 21. What is a quarter wave plate?
- 22. Explain population inversion.
- 23. What is holography? Explain.
- 24. What is graded index fiber?

 $(5 \times 1 = 5)$

Part C (Short Essay/Problems)

Answer any four questions. Each question carries a weight of 2.

- 25. Newton's rings are formed in reflected light using a plano convex lens of radius of curvature one metre and a plane glass plate. Find the radius of the 10th dark ring if solution light of wavelength 590 nm. is used.
- 26. For a sodium lamp, the distance moved by the moving mirror of Michelson interferometer is 0.289 nm. for two distinct appearances for the fringe system. Calculate the difference in wavelength. Mean λ = 589 nm.

- 27. Distinguish between Fresnel and Fraunhofer classes of diffraction.
- 28. Determine the polarizing angle on the surface of water. Refractive index of water air interface is 1.333.
- 29. Bring out the role of metastable states in laser media.
- 30. Find the relative populations of the two stages in ruby laser that produces a light beam of wavelength 694 nm. of 300 K.

 $(4 \times 2 = 8)$

Part D (Essay)

Answer any two questions.

Each question carries a weight of 4.

- 31. Discuss the theory of Newton's rings and determination of wavelength.
- 32. Distinguish between Plane polarized, circularly polarized and elliptically polarized light.
- 33. Give an account on the working of solid state ruby laser.

 $(2 \times 4 = 8)$