-	-	-4	_	-	-
- 10	100	-	•		n
- 12	10.0		-2%	-	54
-3	0	-		v	v

(Pages: 3)

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Fourth Semester

Complementary Course-Mathematics

FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA

(For the programme B.Sc. Physics / Chemistry / Petrochemicals / Geology, Food Science and Quality Control and Computer Maintenance and Electronics)

[2013 admissions]

Time : Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- 1. Find the fundamental period of $\sin(2\pi x)$.
- 2. Write the Bessel function of first kind of order v.
- 3. Write a parametric equation of the sphere $x^2 + y^2 + z^2 = a^2$.
- 4. Write the partial differential equation representing $x^2 + y^2 + (z c)^2 = a^2$, where a and c are arbitrary constants.
- Write the Lagrange's partial differential eequation.
- 6. Round off 1.6583 to four significant figures.
- 7. If $u = 3V^7 6V$. Find the percentage error in u at v = 1, if the error in V is 0.05.
- 8. Find the order of the subgroup of Z4 generated by 3.
- 9. How many homomorphisms are there of Z onto Z.
- Give a basis for Q(√2) over Q.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

11. Sketch the graph of :

$$f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 < x < \pi \end{cases}$$

Turn over

- Solve the equation y'-y=0 by the method of power series.
- 13. Eliminate the constants a and b from the equation $ax^2 + by^2 + z^2 = 1$.
- 14. Show that the direction cosines of the tangent of the point (x, y, z) to the conic $ax^2 + by^2 + cz^2 = 1, x + y + z = 1$ are proportional to (by cz, cz ax, ax by).
- 15. Eliminate the arbitrary function from the equation $z = xy + f(x^2 + y^2)$.
- 16. Evaluate $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and find its absolute and relative errors.
- 17. Find a real root of the equation $f(x) = x^3 x + 1 = 0$ by bisection method.
- 18. Evaluate f(1) using Taylor's series for $f(x) = x^3 3x^2 + 5x 10$.
- Evaluate ³/₂₄ (correct to 4 decimal places) by Newton's iteration method.
- 20. Prove that every cyclic group is abelian.
- 21. Prove that intersection of subspaces of a vector space V over F is again a subspace of V.
- Consider the matrix ring M₂(Z₂). Find the order of the ring and list all units in the ring.

 $(8 \times 2 = 16)$

Part C

Answer any six questions.

Each question carries 4 marks.

- 23. Find the Fourier series for the function $f(x) = \begin{cases} -1, & \text{if } 0 < x < \pi/2 \\ 0, & \text{if } \pi/2 < x < 2\pi \end{cases}$
- 24. Find a solution of $(a^2 x^2)y'' 2xy' + 12y = 0, a \neq 0$.
- 25. Find the integral curves of:

$$\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}.$$

- 26. Find the general integral of the linear partial differential equation $z(xp-yq)=y^2-x^2$.
- 27. Find the Fourier cosin series as well as the Fourier sine series of $p(x) = \pi x$, $0 < x < \pi$.
- 28. Use method of false position to obtain a root correct to 3-decimal places of $x^3 x 1 = 0$.
- 29. The Maclaurin expansion of sin x is given by $\sin x = x \frac{x^3}{3!} \frac{x^5}{5!} \frac{x^7}{7!} \cdots$, where x is in radians. Use the series to compute the value of sin 25° with an accuracy of 0.001.

- 30. Show that a subgroup of a cyclic group is cyclic.
- 31. Show that a group homomorphism $\phi:G\to G$ is a one-to-one map if and only if $\ker \varphi=\{e\}$.

 $(6 \times 4 = 24)$

Part D

Answer any two questions.

Each question carries 15 marks.

- 32. (a) Solve by the method of power series y'' + qy = 0.
 - (b) Find the Fourier series for the function :

$$f(x) = \begin{cases} 1, & -1 < x < 0, p = 2L = 2 \\ -1, & 0 < x < 1 \end{cases}$$

(c) Find the Fourier series for :

$$f(x) = \begin{cases} x & \text{if } 0 < x < \pi \\ \pi - x, & \text{if } \pi < x < 2\pi \end{cases}$$

33.(a) Solve the equation:

$$\frac{a\,dx}{(b-c)\,yz} = \frac{b\,dy}{(c-a)\,2x} = \frac{c\,dz}{(a-b)\,xy}.$$

- (b) Find the general integral of $y^2p xyq = x(z-2y)$.
- (c) Find the partial differential equation of all spheres whose centres lie on the z-axis.
- 34.(a) Use Newton-Raphson method to obtain a root of $x^3 + 3x^2 3 = 0$ correct to three decimal places.
 - (b) Use quotient difference method to obtain the approximate roots of $x^3 x^2 2x + 1 = 0$.
- 35. (a) Show that the set of all complex numbers with usual addition and multiplication is a field.
 - (b) Give the multiplication table for the cyclic subgroup of $\,S_5$ generated by :

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}.$$

Is this group isomorphic to S₃.

 $(2 \times 15 = 30)$