Reg.	No

Name...

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2011

Third Semester

Complementary Course-Operations Research

QUEUEING THEORY

(For B.Sc. Mathematics Model II)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

A bunch of four questions has weight one.

Bunch I

- 1. What is the condition for the matrix $\{a_{ij}\}$ to have a saddle point at (r, s)?
- 2. If $A = \begin{bmatrix} 2 & -3 & 7 \\ -7 & 4 & -5 \\ 5 & -6 & 6 \end{bmatrix}$, find mini max a_{ij} .
- 3. Is there an optimal strategy for the game with payoff matrix $\begin{bmatrix} 1 & 3 \\ -2 & 10 \end{bmatrix}$?
- 4. For what values λ , the game with pay-off matrix $\begin{bmatrix} 2 & 6 \\ -2 & \lambda \end{bmatrix}$ has a value?

Bunch II

- 5. Name the network-analysis which is used for project involving activities of non-repetitive nature.
- 6. In which phase of the project management, we specify the inter-relationship between various activities?
- 7. What is the name defined to an event which represents the joint completion of more than one activity in a network diagram?
- 8. How we represent a dummy activity in a network diagram?

Bunch III

- 9. In an AOA network, what are represented by nodes?
- 10. Name two methods of calculating various times of events and activities in critical path analysis.
- 11. What is represented by the length of critical path in a network diagram?
- 12. If the total float value of an activity is negative, what can we say about the resources given to that activity?

Turn over

Bunch IV

- Give an example of an infinite population in a queuing model.
- 14. Write the probability density function of an exponential distribution.
- 15. First-come, first-served service discipline comes under which queue discipline?
- Name the term to denote the total number of customers in the queuing system who are waiting in the line and not being served.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight one.

- 17. Define a two-person zero-sum game.
- 18. What is meant by an optimal strategy in theory of games?
- 19. What are the three phases of project management?
- 20. Define burnt event in a network diagram.
- 21. Draw a network diagram containing a loop.
- 22. Write two advantages of using AOA network.
- 23. What are the essential features of a queuing system?
- 24. What is meant by pre-emptive priority in a queuing system?

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions. Each question had weight 2.

25. Use the notion of dominance to simplify the following pay-off matrix and then solve the game

$$\begin{bmatrix} 0 & 5 & -4 \\ 3 & 9 & -6 \\ 3 & -1 & 2 \end{bmatrix}$$

26. Let f(X, Y) be such that both $\max \min f(X, Y)$ and $\min \max f(X, Y)$ exists. Prove that

 $\max \min f(X, Y) \le \min \max f(X, Y)$ $X \quad Y \qquad Y \qquad X$

- 27. Explain the significance of PERT | CPM.
- 28. What is a float? What are the different types of floats?
- 29. What are the rules of AOA Network construction?

- 30. In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average of 36 minutes. Calculate:
 - (a) Expected queue size in length.
 - (b) Probability that the queue size exceeds 10.

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any two questions. Each question had weight 4.

- 31. Solve graphically the game whose pay-off matrix is $\begin{bmatrix} 2 & 7 \\ 3 & 5 \\ 11 & 2 \end{bmatrix}$
- 32. Draw a network diagram for the following list of activities:

Activity	Predecessor Activity
A	-
В	-
C	-
D	A
E	В
F	B, C
G	D, E, F
H	E, F

33. Customers arrive at a box office window being manned by a single individual according to a Poisson input process with a mean rate of 30 per hour. The time required to serve a customer has an exponential distribution with a mean of 90 seconds. Find the average waiting time of a customer. Also determine the average number of customers in the system and average queue length.

 $(2 \times 4 = 8)$