Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2015

Third Semester

Core Course 3-CALCULUS

[Common for Model I, Model II Mathematics and B.Sc. Computer Applications]
(2013 Admission onwards)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions from this part. 1 mark each.

- 1. State Leibnitz's theorem for the nth derivative of the product of two functions.
- 2. Define the envelope of a one parameter family of curves.
- 3. Write the Cartesian formula for the radius of curvature of a curve at a point on the curve.
- 4. State Euler's theorem on Homogeneous functions.

5. If
$$z = x^y$$
, find $\frac{\partial z}{\partial y}$.

- Write the shell formula for revolution about y-axis to find the volume of a solid generated by revolving the region between the x-axis and the graph of y = f(x)≥0, 0≤a≤x≤b.
- 7. Write the surface area formula for revolution about the x-axis, a smooth curve y = f(x) on [a, b].
- 8. State Pappus's theorem for volumes.
- 9. Find the area of the region R bounded by y = x and $y = x^2$ in the first quadrant.
- 10. Change the Cartesian integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$ into polar integral.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

11. If
$$ax^2 + 2hxy + by^2 = 1$$
, show that $\frac{d^2y}{dx^2} = \frac{\left(h^2 - ab\right)}{\left(hx + by\right)^2}$.

12. Show that
$$e^{-x} < 1 - x + \frac{x^2}{2}$$
.

13. Find the radius of curvature of $y^2 = 4x$ at the point (x, y).

Turn over

14. If
$$u = a \cdot \tan^{-1} \frac{y}{x}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

15. Find
$$\frac{du}{dt}$$
 where $u = \sin \frac{x}{y}$, $x = e^t$, $y = t^2$.

- 16. Fine the envelope of the family of straight lines y = mx + a/m, m being the parameter.
- 17. Find the area of the region bounded above by y = x + 6, bounded below by $y = x^2$, and bounded on the sides by the lines x = 0 and x = 2.
- Find the volume of the solid generated when the region enclosed by y = √x, y = 2 and x = 0 is revolved about the y-axis.
- 19. Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 4.
- 20. Evaluate $\int_{a}^{2\pi} \int_{a}^{\pi} (\sin x + \cos y) dxdy.$
- 21. Find the area enclosed by the lemniscate $r^2 = 4\cos 2A$.
- Evaluate \int \int_{-\sigma}^{-\sigma} \int_{\delta}^{\delta} dxdzdy.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Find the *n*th derivative of $x^3 \log x$.
- 24. Using Maclaurin's series, prove that $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5}$
- 25. Find the points of inflexion on the curves, $y = \frac{x^3}{a^2 + x^2}$.
- 26. Examine $f(x, y) = x^2 3xy + y^2 + 2x$ for maxima and minima.
- 27. If $v = \frac{1}{r}$ and $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{1}{r^3}$.
- 28. Use the shell method to find the volume of the solid generated by revolving the region bounded by $y = x^2$, y = 2 x, x = 0, for $x \ge 0$ about the y-axis.
- 29. Find the area of the surface generated by revolving the curve $y = x^3$, $0 \le x \le \frac{1}{2}$, about the x-axis.

- 30. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{2\sin\phi} \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta.$
- 31. Evaluate $\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{2-r^2}} dz r dr d\theta$.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (i) If $y = \frac{\sin^{-1} x}{\sqrt{1-x^2}}$ show that $(1-x^2)y_{n+1} (2n+1)xy_n n^2y_{n-1} = 0$.
 - (ii) Find the minimum of $x^2 + y^2 + z^2$, when x + y + z = 3a.
- 33. (i) Prove that the asymptotes of x^2 $y^2 = c^2(x^2 + y^2)$ are the sides of a square.
 - (ii) Find the externa of $z = \sin^2 x + \sin^2 y$ subject of the condition $y x = \pi/4$.
- 34. (i) Find the volume of the solid generated by revolving the region bounded by y = 2x, y = x and x = 1 about the x-axis.
 - (ii) Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}, 1 \le x \le 2$, about the x-axis.
- 35. (i) Calculate $\int \int_{p} \frac{\sin x}{x} dA$.
 - (ii) Evaluate $\int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 dydx$.

 $(2 \times 15 = 30)$