10.7	46	0	0	0
- 840	1	h	×	×
4.4	-	v	u	

(Pages: 3)

Reg. No	***************************************
Nome	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Sixth Semester

Core Course-LINEAR ALGEBRA AND METRIC SPACES

(For B.Sc. Mathematics Model I and II)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1 What do you mean by zero subspace of a vector space?
 - 2 Define linear span of a set S.
 - 3 When an infinite set of vectors is said to be linearly independent?
 - 4 What do you mean by dimension of a vector space?
- II. 5 Determine whether $W = \{(x, y, x, y): x, y \in I\}$ is a subspace of \mathbb{R}^4 .
 - 6 Define a linear transformation.
 - 7 Define Kernel of a linear transformation.
 - 8 Give an example of a linear transformation on a vector space.
- III. 9 Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping defined by F(x, y) = (x + 1, y + 2). Is F a linear transformation.
 - 10 Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection mapping into the xy plane, defined by T(x, y, z) = (x, y, 0). Find the image of T.
 - 11 Define a closed set in a metric space.
 - 12 Define an open sphere in a metric space.
- IV. 13 How will we define boundary of a set?
 - 14 State Cantor's intersection theorem.
 - 15 Define a Cauchy sequence.
 - 16 Give an example of a metric space which is complete.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- 17 Show that the vectors (1, 1, 0), (0, -1, 1), (-1, 0, -1) of \mathbb{R}^3 are linearly dependent.
- 18 Prove that a set of vectors which contains at least one zero vector is linearly dependent.
- 19 Let T: V → V be a linear map and x₁, x₂...x₄ ∈ V. If T(X₁), T(X₂)...T(X₄) are linearly independent vectors of V, then prove that X₁ X₂...X₄ are also linearly independent.
- 20 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map having the following effect on the indicated vectors. T(1, 1) = (2, 1), T(-1, 1) = (6, 3). Compute T(1, 0) and T(0, 1).
- 21 Let X be a metric space. If {x} is a subset of X consisting of a single point, show that its complement is open.
- 22 In any metric space show that the empty set and the full space are closed sets.
- 23 Show that closed subspace of a complete metric space is complete.
- 24 Explain the concept of continuity in a metric space.

(5 × 1 - 5)

Part C

Answer any four questions. Each question has weight 2.

25 Determine the co-ordinate representation of the matrix $\begin{bmatrix} 4 & 3 \\ 6 & 2 \end{bmatrix}$ with respect to the basis

$$\mathbf{S} = \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right\}.$$

- 26 Let V be the vector space of ordered pairs of complex numbers over the real field R. Show that the set S = {(1,0), (i,0), (0,1) (0,i)} is a basis of V.
- 27 Find the matrix of the following linear transformation in \mathbb{R}^3 relative to the usual basis. $\mathbb{T}(x, y, z) = (x, y, 0)$.
- 28 If $S = \{v_1, v_2...v_4\}$ is a basis for a vector space V. Prove that any set containing more than n vectors is linearly dependent.

- 29 Let X be a metric space. Show that a subset G of X is open spit is a union of open spheres.
- 30 Show that a complete subspace of a complete metric space is closed.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31 Prove that if v₁, v₂...v₄ is a basis for V and if w₁, w₂...w_m in V are linearly independent, then m ≤ n.
- 32 Prove that if B is obtained from A by an elementary row operation, then the row space of A is

the same as the row space of B. Hence determine the row rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$.

33 Let X and Y be metric spaces and f a mapping of X into Y. Show that f is continuous if and only if f^{-1} (G) is open in X whenever G is open in Y.

 $(2 \times 4 = 8)$