19575	400	- 40	-	1
E	-7	18	80	u
877	-	4	49	TD
	-	-	-	~

(Pages: 3)

Reg. I	Vo
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH/APRIL 2012

Sixth Semester

Core Course-LINEAR ALGEBRA AND METRIC SPACES

(For Model-I And Model-II B.Sc. Mathematics)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

A bunch of four questions has weight 1.

- State whether true or false: The set {[a, b]} of all real two dimensional row matrices with stand and matrix addition and scalar multiplication defined by α · [a b] = [0 0] is a vector space.
 - 2 Give an example of a subspace of R² that has only one element.
 - 3 Give a Geometrical interpretation for two vectors in R² to be linearly dependent.
 - 4 What is the dimension of the vector space № 2 x 3-
- II. 5 Define row space of a matrix
 - 6 Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be defined by T[ab]=[a0] Then T²[a, b]=... for all a, b in \mathbb{R} .
 - 7 If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation then $T[0, 0] = \dots$
 - 8 Define Kernel of a linear transformation.
- III. 9 If the linear transformation T: V → W is onto then Im (T) = . . .
 - 10 If $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation with rank (T) = 2, then nullity $(T) = \dots$
 - 11 Define the diameter d (A) of a nonempty subset A of a metric space (X, d).
- IV. 13 What is a subset F of a metric space X said to be closed?
 - 14 Define the boundary of a subset A of a metric space.

- 15 State Cantors intersection theorem.
- 16 State a characterization of a continuous mapping of a metric space X to a metric space Y in terms of open sets.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- 17 Determine whether $S = p(t) \in \mathbb{P}^2$: p(2) = 0 is a subspace of \mathbb{P}^2
- 18 Determine whether $S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^2 , considered as column matrices.
- 19 Define a linear transformation. If V and W are vector spaces show that T: V → W defined by T (v) = 0 for all v in V is a linear transformation.
- 20 Find the Kernel and nullity of the linear transformation $T: \mathbb{Z}^2 \to \mathbb{M}_{2 \times 2}$ defined by $T(at^2 + bt + c) = \begin{bmatrix} a & 2b \\ 0 & a \end{bmatrix} \text{ for all } a,b,c \text{ in } \mathbb{R}.$
- 21 In any metric space X, prove that each open sphere is an open set.
- Define the closure \overline{A} of a subset A of a metric space and show that A is closed if and only if $A = \overline{A}$.
- 23 Show that every convergent sequence in a metric space in a Cauchy sequence.
- 24 Let X, Y be metric spaces. If the mapping f: X → Y is uniformly continuous then prove that f is continuous.

 $(5 \times 1 = 5)$

Part C

Answer any four questions. Each question has weight 2.

- 25 Prove that the span of a set of vectors $S = \{V_1, V_2, \dots, V_n\}$ in a vector space V is a subspace of V.
- 26 Determine the dimension of Pn.

27 Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be defined by $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+b \\ a-b \\ 2b \end{bmatrix}$. Find the matrix representation of T with

$$\text{respect to the bases } B = \left\{ \!\! \begin{bmatrix} 1 \\ 0 \end{bmatrix} \!\! , \! \begin{bmatrix} 1 \\ 1 \end{bmatrix} \!\! \right\} \text{ or } \mathbb{R}^2 \text{ and } C = \left\{ \!\! \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \!\! , \! \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \!\! , \! \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \!\! \right\} \text{ for } \mathbb{R}^3 \,.$$

- 28 Determine the Kernel of the matrix $A = \begin{bmatrix} 1 & 1 & 5 \\ 2 & -1 & 1 \end{bmatrix}$.
- 29 Let X be a metric space. Prove that a subset F of X is closed if and only if its complement F is open.
- 30 Let X be a complete metric space and Y be a subspace of X. If Y is closed then prove that Y is complete.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31 If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then prove that any set containing more than n vectors is linearly dependent. Further, deduce that every basis for a finite dimensional vector space must contain the same number of vectors.
- 32 Let T be a linear transformation from an n-dimensional vector space V into W. Prove that rank (T) + nullity (T) = dim (V).
- 33 Prove that every non-empty open set on the real line is the union of a countable class of open intervals.

 $(2 \times 4 = 8)$