E	5863

(Pages: 2)

Rep	g. No	
	Water and the second second	
Nar	ne	**********

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Sixth Semester

Core Course--LINEAR ALGEBRA AND METRIC SPACES

(2013 Admission onwards)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions each in a sentence or two.

Each question carries 1 mark.

- 1. Define additive inverse of any vector in a vector space.
- 2. Define subspace of a vector space.
- Give an example of a linearly dependent set in R².
- 4. Give an example of an one to one function.
- 5. Define rank of a linear transformation.
- 6. Define the linear transformation 'rotation'.
- 7. Define metric space
- 8. Show that full space is an open set in any metric space.
- 9. Define closed sphere.
- 10. Define complete metric space.

 $(10 \times 1 = 10)$

Part R (Short Notes)

Answer any eight questions. Each question carries 2 marks.

- 11. Show that the zero vector in a vector space V is unique.
- 12. Check whether the set of all 2 × 2 real matrices $A = [a_0]$ with $a_{11} = -a_{22}$ under standard matrix addition and scalar multiplication is a vector space.
- 13. For any vector space V, show that the subset containing only the zero vector is a subspace.
- 14. Prove or disprove that the function $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T[a,b] = [a^2,b^2]$ is linear.
- 15. If $T: V \to W$ is a linear transformation, then prove that T(0) = 0.
- 16 If a linear transformation T: V → W is one to one then prove that the image of every linearly independent set of vectors in V is a linearly independent set of vectors in W.

Turn over

- 17. In any metric space X, show that the empty set 0 and the full set X are closed sets.
- 18. Let X be a metric space. Then prove that any intersections of closed sets in X is closed.
- 19. Let X be an arbitrary metric space, and let A be a subset of X. Prove that A = A if A is closed.
- Define nowhere dense set and give an example.
- Define convergence of a sequence and give an example.
- 22. Define boundary of a set and give an example.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Show that a set of vectors in a vector space V that contains the zero vector is linearly dependent.
- 24. Determine whether the set of all real valued continuous functions on the interval [0, 1] under standard function addition and scalar multiplication is a vector space.
- 25. find a basis for the span of the vectors in $\mathbb{S} = \{t, t+1, t-1, 1\}$.
- 26. Prove that a matrix A is similar to a matrix B and B is similar to another matrix C then A is similar to C.
- 27. Find a co-ordinate representation for the vector $v = 4t^2 + 3t + 2$ in \mathbb{P}^2 with respect to the basis $\mathbb{C} = \{t^2 + t, t + 1, t 1\}.$
- 28. Show that the kernal of a linear transformation is a subspace of the domain.
- 29. In any metric space, show that each open sphere is an open set.
- 30. Define Cantor set and explain its construction.
- 31. Let X be a complete metric space, and let Y be a subspace of X. Then show that if Y is closed then it is complete.

 $(6 \times 4 = 24)$

Part D (Essays)

Answer any two questions. Each question carries 15 marks.

- 32. Show that a finite set of vectors is linearly dependent if and only if one of the vectors is a linear combination of the vectors that precede it, in the ordering established by listing of vectors in the set.
- 33. Define kernel of a linear transformation. Show that a linear transformation $T: V \to W$ is one-to-one if and only if the kernal of T contains just the zero vector.
- 34. Show that every non-empty open set in the real line is the union of a countable disjoint class of open intervals.
- 35. State and prove Cantor's intersection theorem.

 $(2 \times 15 = 30)$