W-75	46	1778	13	Start.
847	- 6	a.c.	w	7
812	- 6	K B	O	
All and	-	-	Per .	1.78

(Pages: 2)

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Sixth Semester

Core Course-DISCRETE MATHEMATICS

(For B.Sc. Mathematics Model I and II)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of four questions has weight 1.

- I. 1 Define graph isomorphism.
 - 2 Give an example of a self complementary graph.
 - 3 State first theorem of graph theory.
 - 4 When can you say that a graph is connected?
- II. 5 Define incidence matrix of a graph G.
 - 6 Draw a tree with six vertices.
 - 7 Give an example of a simple graph G such that L (G) is Euler but G is not.
 - 8 Define maximal non-Hamiltonian graph.
- III. 9 How many different Hamiltonian cycles does $K_{n,n}$ have?
 - 10 Define perfect matching.
 - 11 State Hall's marriage theorem.
 - 12 Define "running key".
- IV. 13 Is the sequence 7, 27, 47, 97, 197, 397 superincreasing?
 - 14 State the duality principle on posets.
 - 15 Define complete lattice.
 - 16 When can you say that the interval [a, b] is complemented?

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

17 Let G be a graph in which there is no pair of adjacent edges. What can you say about the degree of the vertices in G?

Turn over

- 18 Prove that the joint of two vertex disjoint complete graphs is a complete graph.
- 19 Prove that a vertex V of Q tree T is a cut vertex if and only if d (V) > 1.
- 20 Which of the wheel graphs Wn's are Euler?
- 21 Write a note on Chinese postman problem.
- 22 Using the linear cipher C=5P+11(mod26), encrypt the message "NUMBER THEORY IS EASY".
- 23 Show that union of two sublattices may not be a sublattice.
- 24 Show that a lattice L is a chain if and only if every non-empty subset of it is a lattice.

 $(5 \times 1 = 5)$

Part C

Answer any four questions. Each question has weight 2.

- 25 Given any two vertices u and v of a graph G, prove that every u-v walk contains a u-v path.
- 26 Prove that an edge e of a graph G is a bridge if and only if e is not a part of any cycle in G.
- 27 Prove that a tree has atmost one perfect matching.
- 28 Let G be a graph in which the degree of every vertex is at least two, then prove that G contains a cycle.
- 29 Find the unique solution of the superincreasing knapsack problem :

$$51 = 3x_1 + 5x_2 + 9x_3 + 18x_4 + 37x_5.$$

30 Prove that dual of a lattice is a lattice.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31 Define 2-connected graph. State and prove Whitney's theorem on 2-connected graphs.
- 32 Define maximum matching and M-augmenting path. Prove that a matching M in a graph G is a maximum matching if and only if G contains no M-augmenting path.
- 33 Prove that any non-modular lattice L contains a sublattice isomorphic with the pentagonal lattice.

 $(2 \times 4 = 8)$