Reg.	No	
Name	ð,	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Sixth Semester

Core Course-DISCRETE MATHEMATICS

(For B.Sc. Mathematics Model I and II)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of four questions has weight 1.

- I. 1. Give an example of a graph which is both complete and complete bipartite.
 - 2. Define subgraph of a graph G.
 - 3. If $d_{G}^{(V)} = K$ then find $d_{G}^{(V)}$?
 - 4. Define adjacency matrix of a graph G.
- II. 5. State Cayley's theorem on spanning trees.
 - 6. Define n-connected graph G.
 - 7. Define Euler tour.
 - 8. Give an example of a Hamiltonian graph.
- III. 9. Define perfect matching.
 - 10. State Hall's Marriage theorem.
 - 11. Give an example of a simple graph G such that L(G) is Euler but G is not.
 - 12. Define "autokey".
- IV. 13. Is the sequence 3, 13, 20, 37, 81 superincreasing?
 - 14. Give an example of a lattice.
 - 15. Define sub-lattice.
 - 16. Define a Chain.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight of 1.

- 17. In any graph G, prove that there is an even number of odd vertices.
- 18. List all the self-complementary graphs with 4 or 5 vertices.
- 19. Write a note on Konigsberge bridge problem.
- Which of the complete graphs K_n's are Euler? Justify.
- 21. State two characterisation of trees.
- 22. Decrypt the message

RXQTGUHOZTKGHFJKTMMTG, which was produced using the linear cipher $C = 3p + 7 \pmod{26}$.

- 23. Prove that a chain is a distributive lattice.
- 24. Prove that a finite lattice has least and greatest elements.

 $(5 \times 1 = 5)$

Part C

Answer any four questions. Each question has weight 2.

- 25. Prove that an edge e of a graph G is a bridge if and only if e is not a part of any cycle in G.
- 26. Prove that a graph G is connected if and only if it has a spanning tree.
- 27. Prove that a connected graph G has an Euler trial if and only if it has at most two odd vertices.
- Prove that a 2-regular graph G has a perfect matching if and only if each component of G is an even cycle.
- 29. Find the unique solution of the super increasing knapsack problem

$$118 = 4x_1 + 5x_2 + 10x_3 + 20x_4 + 41x_5 + 99x_6.$$

30. Prove that duel of a complemented lattice is complemented.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has a weight of 4.

- 31. Define bipartite graph. Let G be a non-empty graph with atleast two vertices. Then prove that G is bipartite if and only if it has no odd cycles.
- 32. If G is a simple graph with n vertices where $n \ge 3$, and the degree $d(V) \ge n/2$ for every vertex V of G, then prove that G is Hamiltonian.
- 33. Define lattice as a poset and as an algebra. Show that these two definitions are equivalent.

 $(2 \times 4 = 8)$