Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Sixth Semester

Core Course-COMPLEX ANALYSIS

(For B.Sc. Mathematics Model I and II)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1 Evaluate $\lim_{z \to i} \frac{i z^3 1}{z + i}$.
 - 2 Define continuity of a function at a point.
 - 3 Give an example of a function which is differentiable only at the origin.
 - 4 Show that the function u(x, y) = 2x(1 y) is a harmonic function.
- II. 5 Show that $\cos h(iz) = \cos z$.
 - 6 Show that f(z) = xy + iy is nowhere analytic.
 - 7 Evaluate $\int_{1}^{2} \left(\frac{1}{t} i\right)^{2} dt$.
 - 8 If C is any simple closed contour then find the value of $\int_{C} \exp(z^3) dz$.
- III. 9 If C is the unit circle |z|=1, then what is the value of $\int_{C}^{z^2} \frac{z^2}{z-3} dz$.
 - 10 If z_0 is any point interior to a positively oriented simple closed contour C, what is the value of $\int_{C} \frac{dz}{z-z_0}$.

11 If C is the arc of the circle
$$|z|=2$$
. from $z=2$ to $z=2$ i, show that $\left|\int_{C} \frac{dz}{z^2-1}\right| \le \pi |3|$.

- 12 If C is any closed contour lying in the open disk | z | < 2, then what is $\int_{C} \frac{z e^{z}}{(z^2 + 9)^5} dz$.
- IV. 13 Write the Maclaurin's series expansion of e^{x} .
 - 14 Define the term pole of order m for a function f(z).
 - 15 What is the nature of the singular point z = 0 of $e^{1/z}$.
 - 16 Consider $f(z) = \frac{1}{z^2(1+z)}$. What is the residue of f(z) at the origin.

 $(4 \times 1 = 4)$

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 1.

- 17 Show that $\exp(z + \pi i) = -\exp z$.
- 18 Show that $|\sinh x| \le \cosh z \le \cosh x$.
- 19 Show that for the function $f(z) = z^2$, Cauchy Riemann equations are satisfied everywhere.
- 20 Evaluate $\int_{C}^{z+2} dz$, where C is the circle $z = 2e^{i\theta} (0 \le \theta \le 2\pi)$.
- 21 Evaluate $\int_{C} \tan z \, dz$, where C is the unit circle |z| = 1, in either direction.
- 22 State Laurent's theorem.
- 23 Show that $\int_{C} \exp\left(\frac{1}{z^2}\right) dz = 0$.
- 24. Find the order of the pole and the residue of the point z=0 for the function $f(z)=\frac{\sinh z}{z^4}$.

Part C

Answer any four questions. Each question has weight 2.

- 25 Show that the function $u(x, y) = \frac{y}{x^2 + y^2}$ is harmonic in some domain and find a harmonic conjugate v(x, y).
- 26 State and prove the sufficient conditions for differentiability.
- 27 State and prove Cauchy's integral formula.
- 28 State and prove Liouville's theorem.
- 29 Give two Laurent series expansion in powers of z for the function $f(z) = \frac{1}{z^2(1-z)}$ and specify the regions in which the expansions and valid.
- 30 State and prove Cauchy's residue theorem.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

31 Let C_R denote the upper half of the circle |z| = R(R > 2), taken in the counterclockwise direction.

Show that
$$\left| \int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} dz \right| \le \frac{\pi R (zR^2 + 1)}{(R^2 - 1)(R^2 - 4)}$$

Then show that the value of the integral tends to zero as $R \to \infty$.

- 32 State and prove Taylor's theorem.
- 33 Use residues to evaluate the definite integral $\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta}$.

 $(2 \times 4 = 8)$