Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Sixth Semester

Core Course-COMPLEX ANALYSIS

(For B.Sc. Mathematics Model I and II)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of four questions has weight 1.

- I. 1. What is an entire function?
 - 2. At which points the function $f(z) = \overline{z}$ differentiable?
 - 3. Define a Harmonic function.
 - 4. What are the arguments of e^z ?
- II. 5. Find the values of z such that $e^z = -2$.
 - 6. Find log(-1).
 - 7. Evaluate $\int_{0}^{\pi/6} e^{i2t} dt$.
 - 8. State Cauchy-Goursat theorem.
- III. 9. What do you mean by a simply connected domain.
 - 10. If C is the positively oriented unit circle |z|=1, then what is the value of $\int_{C}^{\infty} \frac{\exp(2z)}{z^4} dz$.
 - 11. State Morera's theorem.
 - 12. If C is any positively oriented simple closed curve surrounding the origin, then what is the

value of
$$\int_{C} \frac{dz}{z}$$
?

- IV. 13. What is the Maclaurin's series expansion of $\frac{1}{1-z}$ if |z|<1?
 - 14. Name the singularities of the function $\frac{1}{\sin(\pi/z)}$
 - 15. What is the order of the pole of $\frac{\sinh z}{z^4}$ at z = 0?
 - 16. Find the residue of $f(z) = \frac{1}{z^2(1+z)}$ at z = 0.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- 17. Let $f(z) = \frac{z}{\overline{z}}$. Show that $\lim_{z \to 0} f(z)$ does not exist.
- 18. Show that the function f(z) = Im z is no where differentiable.
- 19. Show that f'(z) does not exist at any point for the function $f(z) = 2x + ixy^2$.
- 20. Evaluate $\int_{C} \frac{z+2}{z} dz$, where C is the semicircle $z = 2e^{i\theta}$ $(0 \le \theta \le \pi)$.
- 21. Use Cauchy's integral formula to find $\int_C \frac{z}{9-z^2} dz$, where C is the positively oriented circle |z|=2.
- 22. State Taylor's theorem.
- 23. What is the nature of the singularity at z = 0 for the function $\frac{1 \cos z}{z^2}$.

24. Show that the singular point of $\frac{\exp(2z)}{(z-1)^2}$ is a pole. Determine the order of the pole and the corresponding residue.

 $(5 \times L = 5)$

Part C

Answer any four questions. Each question has weight 2.

- 25. Suppose that f(z) = u + iv and that f'(z) exists at a point z₀. Show that the first order partial derivatives of u and v exists at (x₀, y₀) and that they satisfy Cauchy-Riemann equations.
- Show that u(x, y) = sin h x sin y is Harmonic in some domain and find a Harmonic conjugate v(x, y).
- 27. State and prove fundamental theorem of algebra.
- 28. State and prove Cauchy's integral formula.
- 29. Derive the expansion

$$\frac{\sinh z}{z^2} = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+3)!}, (0 < |z| < \infty).$$

30. Evaluate $\int_C \frac{5z-2}{z(z-1)} dz$ using residue theorem.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31. (a) State and prove Liouville's theorem.
 - (b) If a function f is analytic throught a simply connected domain D then show that

 $\int_{C} f(z) dz = 0 \text{ for every closed contour C lying in D.}$

Turn over

- 32. Write two Laurent series in powers of Z that represent the function $f(z) = \frac{1}{z(1+z^2)}$ in certain domains and specify the domains.
- 33. Evaluate $\int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx$

 $(2 \times 4 = 8)$