\mathbf{E}	-		~	-
BA*	~	-/8	л в	I Proper
-	-		8.2	

(Pages: 3)

Reg.	No
Mam	- Mandata Labora

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH/APRIL 2012

Sixth Semester

Core Course-DISCRETE MATHEMATICS

(For Model I and Model II B.Sc. Mathematics)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1. Define a complete bipartite graph.
 - 2. Define a vertex deleted subgraph of a graph.
 - Draw the complement of the graph K_{2,2}.
 - 4. Define a trail in a graph.
- II. 5. Define spanning tree of a graph.
 - If e is a bridge in a graph G, then W(G-e) = ——— (Fill in the blank).
 - 7. Define an Eulerian graph.
 - 8. Draw a graph having a Hamilton path but not having a Hamilton cycle.
- III. 9. Is K, Eulerian? Why?
 - 10. Define a matching in a graph.
 - 11. Define neighbour set of a set S of verifices of a graph.
 - 12. Encrypt the message RETURN HOME using Caesar Cipher.
- IV. 13. Give an example of a super increasing sequence with five terms.
 - 14. Is the poset (2, 3, 4, 6) under divisibility a Lattice? Why?
 - 15. Define a modular lattice.
 - 16. When is an element of a lattice said to be join irreducible?

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- State and prove the first theorem of Graph theory.
- 18. Define a self-complementary graph. Give an example with justification.

Turn over

19. Prove that an edge e of a graph G is a bridge, then e is not a part of any cycle in G.

2

- 20. If a connected graph G is Eulerian, then prove that the degree of every vertex is even.
- 21. For which values $n \ge 2$, does K_n have a perfect matching?
- Using the linear cipher C≡5 P + 11 (mod 26) encrypt the message NUMBER THEORY.
- 23. Prove that a finite lattice has least and greatest elements.
- 24. Prove that a chain is a distributive lattice.

 $(5 \times 1 = 5)$

Part C

Answer any four questions. Each question has weight 2.

- 25. Let u and v be distinct vertices of a tree T. Prove that there is precisely one path from u to v.
- 26. Let G be a simple graph with at least three vertices. Prove that G is 2-connected if and only if for each pair of distinct vertices u and v of G, there are two internally disjoint u-v paths in G.
- 27. Let G be a simple graph with n vertices where $n \ge 3$ and the degree $d(v) \ge \frac{n}{2}$ for every vertex v of G. Then prove that G is Hamiltonian.
- Prove that a matching M in a graph G is a maximum matching if and only if G contains no M-augmenting path.
- 29. Explain how encryption and decryption are carried out in RSA cryptosystem.
- 30. Prove that the normal subgroups of a group ordered by inclusion form a modular lattice.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31. Let G be a non-empty graph with at least two vertices. Prove that G is bipartite if and only if it has no odd cycles.
- 32. Define the closure C(G) of a simple graph G. Illustrate the construction of C(G) of the following graph G.

3 E 3405

Further prove that a simple graph G is Hamiltonian if and only C(G) is Hamiltonian and deduce that if C(G) is complete, then G is Hamiltonian.

33. Define a complemented lattice. Is the pentagonal lattice complemented? Justify your claim. Also show that the dual of a complemented lattice is complemented. Show further that if an element of a distributive lattice has a complement then that complement is unique.

 $(2 \times 4 = 8)$