Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Core Course-COMPLEX ANALYSIS

(For B.Sc. Mathematics Model I and II)

[2013 Admissions]

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type Questions)

Answer all questions.

Each question carries 1 mark.

1. Find singular points if any for the function :

$$f(z) = \frac{z}{z^2 + 1},$$

- 2. Define Harmonic function.
- 3. Define cosine function of a complex variable z.
- 4. What is the value of $\int_{|z|=1}^{\infty} (z^2+4) dz?$
- 5. Define a simply connected domain.
- 6. State Morera's theorem.
- 7. Write the Maclaurian series of $\frac{1}{1+z}$ if |z| < 1.
- 8. Find the Laurent series of $f(z) = \frac{1}{z-1}$ valid for |z| > 1.
- 9. Find the residue at z = 0 of the function $f(z) = \frac{1}{z+z^2}$.
- 10. Find the residue of $f(z) = \frac{e^z}{z^2}$ at its pole.

 $(10 \times 1 = 10)$

Part B (Short Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. Show that $f(z) = e^x e^{-iy}$ is nowhere differentiable.
- 12. Show that $f(z) = \sin x \cosh y + i \cos x \sinh y$ is an entire function.
- 13. Show that $Log(i^3) \neq 3Log i$.
- 14. Define the hyperbolic sine and the hyperbolic cosine of a complex variable z and show that $\frac{d}{dz}\cosh z = \sinh z.$
- 15. Evaluate $\int_{C}^{z+2} dz$ where C is the semi-circle $z = 2e^{i\theta}$, $0 \le \theta \le \pi$.
- 16. Evaluate $\int_{C} \frac{dz}{z^2 + 4}$ where C is the positive oriented circle |z i| = 2.
- 17. Let C denote the positively oriented boundary of the square whose sides lie along the lines:

$$x = \pm 2$$
 and $y = \pm 2$. Evaluate $\int_{C} \frac{z}{2z+1} dz$.

- 18. Obtain the Maclaurin's series representation of the function $f(z) = e^z$.
- 19. State Laurent's theorem.
- 20. Find the nature of the singular point at $z_0 = 0$ for the function $f(z) = \frac{\sinh z}{z^4}$
- 21. Using residue theorem evaluate $\int_{C} \frac{dz}{z^2 1}$ where C is the positive oriented circle |z| = 2.
- 22. State Jordan's lemma.

Part C (Short Essay Questions)

Answer any six questions. Each question carries 4 marks.

- 23. Prove that $f(z) = e^z$ is differentiable everywhere in the complex plane. Also find the derivative f'(z).
- 24. If f(z) = u(x, y) + i v(x, y) analytic in a domain D, then prove that u and v are harmonic in D.
- 25. If a function f(z) and its conjugate $\overline{f(z)}$ are both analytic in a domain D, then prove that f(z) is constant throughout D.
- 26. State and prove Cauchy's inequality.
- 27. State and prove Liouville's theorem.
- 28. Derive the Taylor series representation $\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-t)^{n+1}} \left(|z-1| < \sqrt{2} \right).$
- 29. Show that when 0 < |z-1| < 2, $\frac{z}{(z-1)(z-3)} = -3 \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} \frac{1}{2(z-1)}$.
- 30. State and prove Cauchy's residue theorem.
- 31. Evaluate $\int_{0}^{\infty} \frac{dx}{x^4 + 1}$.

 $(6 \times 4 = 24)$

Part D (Essay Questions)

Answer any two questions.

Each question carries 15 marks.

- 32. (a) Derive the Cauchy-Riemann equations.
 - (b) Show by an example that satisfaction of the Cauchy-Riemann equations at a point is not sufficient to ensure the existence the derivative of a function f(z) at that point.
- 33. (a) State (without proof) Cauchy Integral formula. Use it to show that the derivative of an analytic function is again analytic.
 - (b) State and prove the maximum modulus principle.

Turn over

- 34. (a) State and prove Taylor's theorem.
 - (b) Expand $f(z) = \cos z$ into a Taylor series about the point $z_0 = \frac{\pi}{2}$.
- 35. Use residues to evaluate :

(a)
$$\int_{-\infty}^{\infty} \frac{\cos 3x}{\left(x^2 + 1\right)^2} dx.$$

(b)
$$\int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta}.$$

 $(2 \times 15 = 30)$