Reg.	No
0-	

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Sixth Semester

Core Course-COMPLEX ANALYSIS

(For B.Sc. Mathematics Model I and II)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type Questions)

Answer all questions.

Each question carries 1 mark.

- 1. Find the domain of definition of the function $f(z) = \frac{1}{z^2 + 1}$.
- 2. When is a function said to be analytic at a point z_0 ?
- 3. What is the real part of eiz?
- 4. Find the value of $\int_{|z|=1}^{\int} \frac{dz}{z-4}$.
- 5. State Cauchy-Goursat theorem.
- 6. If C is the positive oriented unit circle |z| = 1, evaluate $\int_{C} \frac{e^{z}}{z^{3}} dz$.
- 7. Write the Maclaurin series expansion of e^z .
- 8. Find the Laurent series of $f(z) = \frac{1}{z-2}$ valid for |z| > 2.
- 9. Define residue of f(z) at the isolated singular point z_0 .
- 10. Find the residue at z = 0 of the function $f(z) = \frac{1}{z^2 + z}$.

 $(10\times 1=10)$

Part B (Short Answer Questions)

Answer any eight questions.

Each question carries 2 marks.

- 11. Show that $f(z) = (z)^2$ is differentiable only at z = 0.
- 12. Prove that the function f(z) = xy + iy is nowhere analytic.

Turn over

- Find Log (1 i).
- 14. Define the cosine function of a complex variable z and show that it is an even function.
- 15. Evaluate $\int_C \frac{z+2}{z} dz$, where C is the circle $z = 2e^{i\theta} (\theta \le \theta \le 2\pi)$.
- 16. If C is any positive oriented simple closed contour surrounding origin, show that $\int_{C} \frac{dz}{z} = 2\pi i$.
- 17. Evaluate $\int_{C} \frac{dz}{z^2+1}$, where C is the positive oriented circle |z|=3.
- 18. With the aid of remainders verify that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$ whenever |z| < 1.
- State Laurent's theorem.
- 20. Find the nature of the singular point at $z_0 = 0$ of $f(z) = e^{1/z}$.
- 21. Define the improper integral $\int_{-\infty}^{\infty} f(x) dx$ and the Cauchy principal value of this integral.
- 22. State Jordan's lemma.

 $(8 \times 2 = 16)$

Part C (Short Essay Questions)

Answer any six questions. Each question carries 4 marks.

- 23. Prove that f'(z) = 0 everywhere in a domain D, then f(z) is constant throughout D.
- 24. If f(z) = u(x, y) + i v(x, y) is analytic in a domain D, prove that u and v are harmonic in D.
- 25. Prove that $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$.
- 26. Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Without evaluating the integral, show that $\left|\int_C \frac{dz}{z^2-1}\right| \leq \frac{\pi}{3}$.
- State and prove the fundamental theorem of algebra.
- 28. Obtain the Taylor series $e^z = e \sum_{n=0}^{\infty} \frac{(3-1)^n}{n!} (|z-1| < \infty)$ for the function $f(z) = e^z$ by using (a) $f^{(n)}(1)$ (n = 0, 1, 2, ...); (b) writing $e^z = e^{z+1}e$.
- 29. Expand $f(z) = \frac{-1}{(z-1)(z-2)}$ as a power series in the domains (a) |z| < 1; (b) 1 < |z| < 2.

- 30. State and prove Cauchy's residue theorem.
- 31. Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2+1)^2}$.

 $(6 \times 4 = 24)$

Part D (Essay Questions)

Answer any two questions. Each question carries 15 marks.

- 32. (a) State and prove the chain rule for differentiating composite functions.
 - (b) Derive the Cauchy-Riemann equations.
- 33. (a) State and prove the Cauchy-Integral formula.
 - (b) If f is analytic everywhere inside and on a simple closed curve C, then for any point z inside of C, prove that

$$f'(z) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(s) dS}{(s-z)^2}.$$

- 34. (a) State and prove Taylor's theorem.
 - (b) Expand $f(z) = \frac{1}{z}$ into a Taylor series about the point $z_0 = 1$.
- 35. Use residues to evaluate:

(a)
$$\int_{0}^{\infty} \frac{\cos ax}{x^2 + 1} dx \ (a > 0).$$

(b)
$$\int_{0}^{2\pi} \frac{d\theta}{1 + a \sin \theta}$$
 (-1 < a < 1).

 $(2 \times 15 = 30)$