Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Sixth Semester

Core Course-REAL ANALYSIS

(For B.Sc. Mathematics Model I and II and B.Sc. Computer Applications)

Time : Three Hours

Maximum Weight: 25

Part A (Objective Type)

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1 Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$ is not convergent.
 - 2 State D'Alembert's ratio test.
 - 3 State Raabe's test for convergence of a series.
 - 4 What is an alternating series ?
- II. 5 What do you mean by absolute convergence of a series ?
 - 6 Is the series $1 \frac{1}{2^3} + \frac{1}{3^3} \frac{1}{4^3} + \dots$ absolutely convergent.
 - 7 What do you mean by jump discontinuity?
 - 8 Define uniform continuity.
- III. 9 Show that the function defined by $f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{when } x \neq 0 \\ 1 & \text{when } x = 0 \end{cases}$ has a removable discontinuity

at the origin.

- 10 At which Point the function $f(x) = \frac{1}{1+|x|}$ for real x, attain its supremum.
- 11 Define the upper sum of a bounded function of defined on a closed bounded interval.
- 12 Define Riemann integral of a bounded function.

- IV. 13 State fundamental theorem of calculus.
 - 14 State Cauchy's criterion for uniform convergence.
 - 15 State Dirichelet's test for uniform convergence.
 - 16 Test for uniform convergence the series $\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots, -\frac{1}{2} \le x \le \frac{1}{2}$.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- 17 Prove that the alternating series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4}$... is convergent.
- 18 Show that the series $\sum \frac{1-n}{1+2n}$ diverges.
- 19 Investigate the behaviour of $\sum a_n$ if $a_n = (\sqrt[n]{n} 1)^n$.
- 20 Show that the function defined by $f(x) = \begin{cases} x \sin | x, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$ is continuous at x = 0.
- 21 Show that a function which is uniformly continuous on an interval is continuous on that interval.
- 22 Define Riemann sum of a bounded function f over [a, b] relative to a partition P.
- 23 Show by an example that integrability of |f| need not imply the integrability of f.
- 24 Show that the sequence $\{f_n\}$ where $f_n(x) = \frac{nx}{1 + n^2 x^2}$ is not uniformly convergent on any interval containing zero.

 $(5 \times 1 = 5)$

Part C

Answer any four questions. Each question has weight 2.

- 25 Test the convergence of the series $\sum \frac{n^2-1}{n^2+1} x^n$.
- 26 Show that the series $\frac{1}{1p} \frac{1}{2p} + \frac{1}{3p}$... Converges for p > 0.
- 27 Show that a function which is continuous on a closed interval [a, b], assumes every value between its bounds.
- 28 Show that a constant function k is integrable on [a, b] and $\int_a^b k dx = k(b-a)$.
- 29 If a function f is bounded and integrable on each of the intervals [a, b], [c, b] and [a, b], where c is a point in [a, b], then show that $\int_a^b f \, dx = \int_a^c f \, dx + \int_c^b f \, dx$.
- 30 State and prove Weierstrass µ-test.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31 State and prove Cauchy's general principle of convergence of a series. Use this test to show that the series $\sum \frac{1}{n}$ does not converge.
- 32 Show that if a function f is continuous on a closed interval [a, b] and f (a) and f (b) are of opposite signs then there exists at least one point α ∈ [a, b] such that f (α) = 0.
- 33 State and prove Fundamental theorem of calculus.

 $(2 \times 4 = 8)$