B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH/APRIL 2012

Sixth Semester

Core Course-REAL ANALYSIS

(For B.Sc. Mathematics—Model-I, B.Sc. Mathematics—Model-II and B.Sc. Computer Applications)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all the questions.

Each bunch of 4 questions has weight 1

- I. 1 Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$ is not convergent.
 - 2 State Cauchy's general principle of convergence for series.
 - 3 Investigate the behaviour of the series whose n^{th} term is $\sin \left(\frac{1}{n}\right)$.
 - 4 State Cauchy's root test.
- II. 5 Define an alternating series.
 - 6 When a series is said to be absolutely convergent?
 - 7 When a function f is said to be continuous at a point "C" of its domain?
 - 8 Show that $f(x) = \frac{\sin 2x}{x}, x \neq 0$

$$=1$$
 , $x=0$

has removable discontinuity at the origin.

- III. 9 State the intermediate value theorem.
 - 10 When a function f defined on an internal I is said to be uniformly continuous on I?
 - 11 Define the norm of a partition P of [a, b].
 - 12 State Darboux's theorem.
- IV. 13 State the fundamental theorem of Calculus.
 - 14 Find the point-wise limit of the sequence of functions (f_n) , where $f_n(x) = x^n$, $x \in [0, 1]$.

Turn over

- 15 State Cauchy's criterion for uniform convergence of a sequence of functions (f_n) defined on [a, b].
- 16 State Abel's test.

 $(4 \times 1 = 4)$

Part B (Short Answer Questions)

Answer any five questions. Each question has weight 1.

- 17 Show that the series $\frac{1}{(\log 2)^P} + \frac{1}{(\log 3)^P} + \dots + \frac{1}{(\log n)^P} + \dots$ diverges for p > 0.
- 18 Test for convergence the series $\sum \frac{n^2-1}{n^2+1}x^n$, x > 0.
- 19 Show that for any fixed value of x, the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is convergent.
- 20 Show that the function f defined by

f(x) = x, if x is rational = 0, if x is irrational is continuous only at x = 0.

- 21 Show that $f(x) = x^2$ is uniformly continuous on [-1, 1].
- 22 Show that a constant function k is integrable.
- 23 If P* is a refinement of a partition P of [a, b], then for a bounded function f, prove that $L(P^*, f) \ge L(P, f)$.
- 24 Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{nx}{1 + n^2 x^2}$ is not uniformly convergent on any interval containing zero.

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

- 25 If ΣU_n is a positive term series, such that $\lim_{n\to\infty} n \left(\frac{U_n}{U_{n+1}}-1\right) = l$, then prove that the series converges if l>1.
- 26 Show that $\lim_{n\to\infty} \frac{m(m-1)\dots(m-n+1)}{(n-1)!} x^n = 0$, where |x| < 1 and "m" is any real number.

- 27 If a function f is continuous on [a, b], then prove that it attains its bounds atleast once in [a, b].
- 28 If f_1 and f_2 are two bounded and integrable functions on [a, b], then prove that $f_1 f_2$ is also integrable on [a, b].
- 29 If a function f is monotonic on [a, b], then prove that it is integrable on [a, b].
- 30 State and prove Weierstrass's M-test.

 $(4 \times 2 = 8)$

Part D (Essay Type)

Answer any two questions. Each question has weight 4.

- 31 Prove that a positive term series $\Sigma \frac{1}{n^p}$ is convergent if and only if p > 1.
- 32 If a function f is continuous on [a, b] and f(a) and f(b) are of opposite signs, then prove that there exists at least one point α ∈ la, b[such that f(α) = 0.
- 32 If f is bounded and integrable on [a, b], then:
 - (a) Prove that |f| is also bounded and integrable on [a, b].
 - (b) Prove that f₂ is also integrable on [a, b].

 $(2 \times 4 = 8)$