B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Sixth Semester

Core Course—REAL ANALYSIS

(For B.Sc. Mathematics Model I and Model II and B.Sc. Computer Application)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- 1. When does the positive term geometric series $1 + r + r^2 + ...$ converge? Diverge?
- 2. Is the series $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{4^3} + \cdots$ convergent? Why?
- 3. Define an alternating series.
- 4. Define removable discontinuity.
- 5. State the Intermediate Value Theorem.
- 6. Define partition of [a, b] and a refinement of a partition.
- 7. State Darboux's theorem.
- 8. Let $f(x) = \frac{1}{2}$ for all x in [0, 1]. Is f Riemann integrable on [0, 1]? Why or why not?
- 9. Define uniform convergence of a sequence of functions.
- State Weierstress's M-test.

 $(10\times1=10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. If $\sum u_n$ is convergent, prove that $\lim_{n\to\infty} u_n = 0$.
- 12. Test the convergence of the series : $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$
- 13. State Raabe's test.

Turn over

- 14. Prove or disprove: Every convergent series is absolutely convergent.
- 15. If [x] denotes the largest integer $\leq x$, discuss the continuity at x = 4 for the function $f(x) = x [x], x \geq 0$.
- 16. Prove that a function which is uniformly continuous on an interval is continuous on that interval.
- 17. Show that the function $f(x) = x^2$ is uniformly continuous on [-1, 1].
- 18. Explain upper and lower integrals of a bounded function f on [a, b].
- 19. If f is integrable on [a, b], prove that |f| is integrable on [a, b].
- 20. Let f be a bounded function on [a, b]. Prove that for any two partitions $P_1, P_2, L(P_1, f) \le U(P_2, f)$.
- 21. Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{1}{x+n}$ is uniformly convergent on [0, 1].
- 22. Show that $\sum \frac{\cos n\theta}{n^p}$, p > 1 is uniformly convergent for all real values of θ .

 $(8 \times 2 - 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Prove that the positive term series $\sum \frac{1}{n^p}$ is convergent for p > 1.
- 24. State and prove Cauchy's root test.
- 25. Show that the series $x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ converges absolutely for all values of x.
- 26. If a function f is continuous on [a, b], prove that it attains its bounds at least once in [a, b].
- 27. Show that the function f defined by $f(x) = \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0 is not uniformly continuous on $[0, \infty]$.
- 28. If f is integrable on [a, b], prove that f^2 is integrable on [a, b].
- 29. Let f be defined by $f(x) = \frac{1}{2^n}$ for $\frac{1}{2^{n+1}} < x < \frac{1}{2^n}$ (n = 0, 1, 2, ...) and f(0) = 0. Compute $\int_0^1 f \, dx$.
- 30. State and prove Cauchy's criterion for uniform convergence of a sequence of functions.
- 31. Show that the sequence $\{f_n\}$ where $f_n(x) = \frac{nx}{1+n^2x^2}$ is not uniformly convergent on any interval containing zero.

 $(6 \times 4 = 24)$

Part D

Answer any **two** questions. Each question carries 15 marks.

- 32. (a) State and prove D'Alembert's ratio test.
 - (b) Test for convergence the series $\sum \frac{n^2-1}{n^2+1} x^n, x > 0$.
- (a) Prove that a function which is continuous on a closed interval is uniformly continuous on that interval.
 - (b) Is the above property true if the interval is not closed? Justify your answer.
- 34. (a) Prove that a bounded function f is integable on [a, b] if and only if for every $\varepsilon > 0$, there exists a partition P of [a, b] such that $U(P, f) L(P, f) < \varepsilon$.
 - (b) State and prove the Fundamental theorem of Calculus.
- 35. (a) Show that the sequence $\{f_n\}$, where $f_n(x) = x^n$ is uniformly convergent on [0, k], k < 1 and only pointwise convergent on [0, 1].
 - (b) State Dirichlet's test for uniform convergence of a series.
 - (c) Prove that the series $\sum (-1)^n \frac{x^2 + n}{n^2}$, converge uniformly on every bounded interval, but does not converge absolutely for any value of x.

 $(2 \times 15 = 30)$