E	9	143
100	0	140

(Pages: 4)

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2012

Second Semester

Complementary Course 2—DUALITY, TRANSPORTATION AND ASSIGNMENT PROBLEMS

(For B.Sc. Mathematics Model II Programme)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

Each bunch of 4 questions has weight 1.

- I. 1 How many terms are there in the objectives function of the dual of a linear programming problem with n variables and m constraints?
 - 2 If in a primal problem, the jth variable x_j is unrestricted, then what can we say about the jth constraint of its dual?
 - 3 How many feasible solutions are there for the dual of a linear programming problem if the primal problem is feasible and it has an unbounded optimum?
 - 4 If x_j is positive in the optimal solution of the primal, then what is the value of the corresponding dual slack variable y_{m+j} in the optimal solution of its dual?
- II. 5 What is meant by a balanced transportation problem?
 - 6 What is the condition for which a basis to be triangular?
 - 7 Suppose that in a transportation problem, surplus left at the sources after all the demands are met. Then what is the relation between Σa_i and Σb_j with the standard notations?
 - 8 What will we do in the solution of a transportation problem if the actual supply is short of the demand?
- III. 9 Consider a balanced transportation problem with m = 4, n = 6. What is the rank of the transportation matrix?
 - 10 Give an example of a situation in which a loop occur in a transportation array.
 - 11 How many non-zero entries are there in the second column of the transportation matrix of a transportation problem with 3 sources and 4 sinks?
 - 12 Write the general form of an objective function of a transportation-cum-transshipment problem.
- IV. 13 Which of the following statements is true?

Statement A: Every assignment problem is a transportation problem.

Statement B: Every transportation problem is an assignment problem.

14 What is the number of basic variables in a basic feasible solution of an assignment problem with n workers and n different jobs?

Turn over

- 15 Write the general form of the constraints for an assignment problem.
- 16 What is the relation between the outflow and inflow at a source for a transportation problem with transshipment?

 $(4 \times 1 = 4)$

Part B (Short Answer Type Questions)

Answer any five questions. Each question has weight 1.

- 17 Give an example of a linear programming problem in both its primal and dual forms.
- 18 Write two applications of duality.
- 19 What is the mathematical model of the general transportation problem?
- 20 Write a short note on transportation-cum-transhipment problem.
- 21 State the caterer problem.
- 22 What is the difference between a transportation array and a transportation matrix?
- 23 State the generalized transportation problem.
- 24 Write the first step of the transportation algorithm.

 $(5 \times 1 = 5)$

Part C (Short Essay Type Questions)

Answer any four questions. Each question has weight 2.

25 Solve the following problem by solving its dual graphically:

$$\begin{aligned} \text{Maximize} &: y_1 + y_2 + y_3 \\ \text{subject to} &: 2 \ y_1 + y_2 + 2 y_3 \le 2 \\ &\quad 4 \ y_1 + 2 y_2 + y_3 \le 2 \\ &\quad y_j \ge 0 \text{ for } j = 1, 2, 3. \end{aligned}$$

- 26 Explain with examples the applications of linear programming.
- 27 Solve the transportation problem for minimum cost with the cost coefficients, demands and supplies as given in the following table :

	D ₁	\mathbf{D}_2	D_3	D_4	
0,	1	2	-2	3	70
02	2	4	0	1	38
03	1	2	-2	5	32
	40	28	30	42	

28 A farmer has three farms A, B, C which need respectively 100, 300 and 50 units of water annually. The canal can supply 150 units and tubewell 200 units while the balance is left at the mercy of Rain God. The following table shows the cost per unit of water in a dry year when the rains totally fail, the third row giving the cost of failure of rain. Find how the canal and tubewell water should be utilized to minimize the total cost.

	A	В	C	
Canal	3	5	7	150
Tubewell	6	4	10	200
Failure rain	8	10	3	100
-	100	300	50	1-9.5

Food bags have to be lifted by three different types of aircraft A₁, A₂, A₃ from an airport and dropped in flood affected villages V₁, V₂, V₃, V₄, V₅. The quantity of food that can be carried in one trip by aircraft A_i to village V_j is given in the following table. The total number of trips that A_i can make in a day is given in the last column. The number of trips possible each day to village V_j is given in the last row. Find the number of trips each aircraft should make on each village so that the total quantity of food transported in a day is maximum.

	V ₁	V_2	V_3	V ₄	V_5	1
A_1	10	8	6	9	12	50
${\rm A}_2$	5	3	8	4	10	90
A_3	7	9	6	10	4	60
AU II	100	80	70	40	20	

30 Solve the following problem of transportation with transhipment with sources S_1 , S_2 sinks D_1 , D_2 and junction J for minimum cost.

Minimum cost	i-Ti-						
B Wintersell	medi	S_1	S2	J	D_1	D_2	
Transportation	cost	4	3	1	3	5	
capacity		60	40	-	35	45	
	S1	-	4	3	10	5	
Transportation	S_2	4	-	2	5	6	
cost	J	4	2	-	8	7	
	D_1	11	4	6	A Sinks	4	
	D_2	5	7	5	4	m part	

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions. Each question has weight 4.

31 Solve the following problem by the Dual simplex method:

Minimize: $2x_1 + 3x_2$

subject to: $2x_1 + 3x_2 \le 30$,

$$x_1 + 2x_2 \ge 10$$

$$x_1 \ge 0, x_2 \ge 0.$$

32 Solve the following transportation problem for minimum cost starting with the degenerate solution:

$$x_{12} = 30, x_{21} = 40, x_{32} = 20, x_{43} = 60$$

. u5i - 5		77	1674	
TOTAL S	D_1	D_2	D_3	1
0,	4	5	2	30
O_2	4	1	3	40
O_3	3	6	2	20
O_4	2	3	7	60
	40	50	60	1217

33 A batch of four jobs can be assigned to five different machines. The set-up time for each job on each machine is given in the following table. Find an optimal assignment of jobs to machines which will minimize the total set-up time.

Machines

		1	2	3	4	- 5	
	1	10	11	4	2	8	
	2	7	11	10	14	12	
Jobs	3	5	6	9	12	14	
	4	13	15	11	10	7	

 $(2 \times 4 = 8)$