10	CHAO
L	6540

(Pages: 4)

Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2017

Second Semester

Complementary Course—OPERATIONS RESEARCH—DUALITY TRANSPORTATION AND ASSIGNMENT PROBLEMS

(For B.Sc. Mathematics Model II)

[2013 Admission onwards]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- In the primal problem if the objective is to maximise, then what is the objective in the dual problem.
- 2. What is the relationship between the matrix of the coefficients of variables in the dual and primal problems?
- 3. What is the relation between the optimum values of the objective functions of the Primal and dual Problems?
- 4. With reference to a transportation problem define the term feasible solution.
- 5. Define loop of a transportation table.
- 6. Define the term triangular basis.
- 7. What is the minimum number of cells in a loop?
- 8. What is degeneracy in transportation problem?
- Can there be multiple optimal solutions to an assignment problem.
- 10. What is a balanced transportation problem?

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

11. Write the dual of the problem:

Turn over

- Define the dual of a linear programming problem.
- 13. What are the rules for constructing the dual from the primal?
- 14. State the transportation problem.
- 15. Discuss the test for optimality in a transportation problem.
- 16. What is meant by unbalanced transportation problem?
- 17. Describe the matrix form of a transportation problem.
- 18. How can the optimal solution of primal be obtained from the optimal solution of the dual?
- 19. How are overcomes degeneracy in a transportation problem?
- 20. Describe the assignment problem.
- 21. State travelling salesman problem.
- 22. With any three methods of solving an assignment problem.

 $(8 \times 2 = 16)$

Part C

Answer any six questions.

Each question carries 4 marks.

- 23. Prove that if the primal problem is feasible, then it has an unbounded optimum if and only if the dual has no feasible solution, and vice versa.
- 24. Prove that dual of the dual is the primal.
- 25. Solve graphically to show that the following problem has an unbounded solution:

Maximise $3x_1 + 4x_2$ subject to

$$\begin{array}{lll} x_2 & - & x_1 \leq & 1 \\ x_1 & + & x_2 \geq & 4 \\ x_1 & - & 3x_2 \leq & 3, x_1 \geq 0, x_2 \geq 0 \end{array}$$

26. Solve the following transportation problem for minimum cost starting with the degenerate solution $x_{12} = 30$, $x_{21} = 40$, $x_{32} = 20$, $x_{43} = 60$:

	D_1	$\mathbf{D_2}$	\mathbf{D}_3	
0,	4	5	2	30
O_2	4	1	3	40
O_3	3	6	2	20
O_4	2	3	7	60
	40	50	60	

27. Explain how to resolve degeneracy in transportation problem.

28. A steel company has three open hearth furnaces and five rolling mills. Transportation costs (rupees per quintal) for shipping steel from furnaces to rolling mills are shown below:

	M_1	$\mathbf{M_2}$	\mathbf{M}_3	M_4	M_5	Supply
F_1	4	2	3	2	6	8
$\mathbf{F_2}$	5	4	5	2	1	12
$\mathbf{F_3}$	6	5	4	7	7	14
Demand	4	4	6	8	8	

What is the optimal shipping schedule?

- 29. Explain the difference between a transportation and an assignment problem.
- 30. Give an algorithm to solve an assignment problem.
- 31. Explain the transhipment problem.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

32. Solve by dual simplex method:

Minimise
$$x_1+3x_2+2x_3$$
 subject to
$$4x_1-5x_2+7x_3 \leq 8, \quad 2x_1-4x_2+2x_3 \geq 2,$$

$$x_1-3x_2+2x_3 \leq 2, \quad x_1,x_2,x_3 \geq 0.$$

33. Four operators A, B, C, D are to be assigned to four machines M_1 , M_2 , M_3 , M_4 with the restriction that A and C cannot work on M_3 and M_4 respectively. The assignment costs are given below. Find the minimum assignment cost:

	M_1	M_2	M_3	M_4
A	5	2		5
В	7	3	2	4
С	9	5_3	5	3
D	7	7	6	2

34. A salesman has to visit five cities A, B, C, D and E. The distance C (in hundred kms) between the five cities are as follows:

	A	В	C	D	E
A	-	7	6	8	4
В	7	32	8	5	6
C	6	8	-	9	7
D	8	5	9	_	8
E	4	6	7	8	-

If the salesman starts from city A and has come back to city A, which route should be select so that total distance travelled is minimum.

35. Describe the cateror problem.

 $(2 \times 15 = 30)$