| TO S | 04    | OF |
|------|-------|----|
| E    | $z_1$ | 21 |

(Pages: 4)

| Reg. | No |
|------|----|
| Name | 8  |

# B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2015

## Second Semester

Core Course 2—ANALYTIC GEOMETRY, TRIGONOMETRY AND MATRICES

(Common for B.Sc. Mathematics Model I, Model II and B.Sc. Computer Applications)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

#### Part A

Answer all questions, Each question carries 1 mark.

- Define the hyperbolic sine function sinh x.
- 2. Separate into real and imaginary parts  $\tan (x-iy)$ .
- 3. Write the equation of the normal at the point 't' to the parabola  $y^2 = 4\alpha x$ .
- 4. What is the condition for the normals at  $t_1$  and  $t_2$  to the parabola interset at a point on the parabola  $y^2 = 4ax$ ?
- 5. What is the equation of the normal at the point  $\theta$  on the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ .
- 6. Find the equation of the asymptoes of  $2x^2 + 2xy 3x + y = 0$ .
- 7. Find the point of intersection of the tangents at  $t_1$  and  $t_2$  on the rectangular hyperbola  $xy = c^2$ .
- 8. What is the polar equation of a straight line?
- 9. What are non-singular matrices?
- 10. Fin the characteristic polynomial of  $\begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$ .

 $(10 \times 1 = 10)$ 

## Part B

Answer any eight questions. Each question carries 2 marks.

11. Show that in a parabola, the subnormal is constant.

Turn over

- 12. Show that the sum of the ordinates of the feet of the normals from any point to a parabola is zero.
- 13. If s and s' are the foci of the ellipse and p any point on if, show that sp + s'p = 2a.
- 14. Find the condition for lx + my + u = 0 to be a normal to  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ .
- 15. Find the angle between the asymptoes of the hyperbola  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ .
- 16. Find the equation of the hyperbola conjugate to  $4x^2 + 13xy + 3y^2 + x + 3y 25 = 0$ .
- 17. What is the polar equation of a circle?
- 18. Prove that  $\log (-1) = i\pi$ .
- 19. If  $\tan \frac{x}{2} = \tanh \frac{x}{2}$ . Prove that  $\cos x \cdot \cosh x = 1$ .
- 20. What are the elementary transformations on a matrix.
- 21. Reduce to the normal form  $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$
- 22. Find the eigen values of  $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

 $(8 \times 2 = 16)$ 

#### Part C

Answer any six questions.

Each question carries 4 marks.

- 23. Show that tangents at the ends of a focal chord of a parabola, intersects at right angles on the directrix.
- 24. Prove that the equation to the locus of the point of intersection of two normals to the parabola  $y^2 = 4ax$  which are perpendicular to each other is the curve  $y^2 = a(x-3a)$ .
- 25. Show that the eccentric angles of the ends of a pair conjugate diameters of an ellipse differ by a right angle.

- 26. In the ellipse  $3x^2 + 7y^2 = 21$ . Find the equation of the equi conjugate diameters and their lengths.
- 27. If e and  $e_1$  are the eccentricities of a hyperbola and its conjugate, show that  $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$ .
- 28. If  $\cos (x+iy) = \cos \theta + i \sin \theta$ , show that  $\cos 2x + \cosh 2y = 2$ .
- 29. Sum the series  $\cos x \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x \dots \infty$ .
- 30. Using Cayley-Hamilton theorem, find  $A^3$  if  $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$ .
- 31. Find the eigen values and the corresponding eigen vectors to  $\begin{bmatrix} 5 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$

 $(6 \times 4 = 24)$ 

## Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) If  $c = \cos^2 \theta \frac{1}{3}\cos^3 \theta \cos 3\theta + \frac{1}{5}\cos^5 \theta \cos 5\theta + \dots$  prove that  $\tan 2c = 2 \cot^2 \theta$ .
  - (b) Resolve into real factors  $x^8 + 1$ .
- 33. (a) Prove that the locus of the poles of all normal chords of the rectangular hyperbola  $xy = c^2$  is the curve  $(x^2 y^2)^2 + 4c^2 xy = 0$ .
  - (b) Find the equation of a rectangular hyperbola referred to its asymptotes as axes.
- 34. (a) Find the locus of the foot of the perpendiculars drawn from the pole to the tangents to the circle r = 2a cos θ.
  - (b) Find the equation of the tangent of  $\alpha$  to the conic  $\frac{l}{r} = 1 + e \cos(\theta r)$ .

35. (a) Using matrix method solve:

$$2x - y + 3z = 9$$

$$x + y + z = 6$$

$$x - y + z = 2.$$

(b) Solve the system of equations:

$$x + 2y + 3z = 0$$

$$2x + y + 3z = 0$$

$$3x + 2y + z = 0.$$

 $(2 \times 15 = 30)$