

QP CODE: 19101795

Reg No	:	•••••
Name		

B.Sc. DEGREE (CBCS) EXAMINATION, MAY 2019

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main,B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS

723D5260

Maximum Marks: 80 Time: 3 Hours

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Derive the condition that the line y = mx + c is a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 2. Find the orthoptic locus of the parabola $y^2 = 4ax$.
- 3. Let P be a point on the circle $x^2 + y^2 = a^2$ and PQ and PR be tangents to the hyperbola $x^2 y^2 = a^2$. Prove that th elocus of the middle point of QR is the curve $(x^2 y^2)^2 = a^2(x^2 + y^2)$.
- 4. Show that if a diameter of an ellipse bisects chords parallel to another, then the later will bisect chords parallel to the former.
- 5. Find the polar coordinates corresponding to the cartesian coordinate (-3, $\sqrt{3}$).
- 6. Find the polar equation of a circle having the pole lies on the circumference of the circle and the initial line passes through the centre.
- 7. Prove that $\sin^2 x + \cos^2 x = 1$.
- 8. Prove that $\cosh 2x = 2(\cosh x)^2 1$.
- 9. Factorize x^{10} 1
- 10. If x = f(t), y = g(t) prove that $\frac{d^2y}{dx^2} = \frac{f_1g_2 f_2g_1}{f_1^2}$ where suffixes denote the differentiation with respect to t.
- 11. Find the nth derivative of $(ax + b)^m$.
- 12. Evaluate $\lim_{x\to 0} (\cot x)^{\sin 2x}$.

 $(10 \times 2 = 20)$

Page 1/2 Turn Over

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Find the locus of the point of intersection of two tangents to the parabola $y^2 = 4ax$, which makes an angle α with one another.
- 14. Show that the chord of contact of tangents from any point on the directrix of a conic passes through the corresponding focus.
- 15. Show that the locus of the poles of normal chords of $y^2 = 4ax$ is $(x+2a)y^2 + 4a^3 = 0$.
- 16. If P and Q are extremities of two semi-conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and S is a focus, prove that $PQ^2 (SP SQ)^2 = 2b^2$.
- 17. Show that in a conic the semi latus rectum is the harmonic mean between the segments of a focal chord.
- 18. Sum to n terms the series $1 + c\cos\alpha + c^2\cos2\alpha + \dots$ where c is less than unity.
- 19. Sum the series $1 + c \cosh \alpha + c^2 \cosh 2\alpha + \ldots + c^{n-1} \cosh (n-1)\alpha$, where c is less than unity.
- 20. If $y = x \log \frac{x-1}{x+1}$, prove that $\frac{d^n y}{dx^n} = (-1)^n (n-2)! \left[\frac{x-n}{(x-1)^n} \frac{x+n}{(x+1)^n} \right]$.
- 21. Determine $lim[\frac{1}{x^2} \frac{1}{sin^2x}]$ as $x \to 0$.

 $(6 \times 5 = 30)$

Part C

Answer any **two** questions.

Each question carries 15 marks.

- 22. If P be any point on the director circle of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the locus of the middle point of th chord in which the epolar of P cuts the ellipse is $(\frac{x^2}{a^2} + \frac{y^2}{b^2})^2 = \frac{x^2 + y^2}{a^2 + b^2}$.
- 23. Find the condition in order that the line $\frac{l}{r} = A\cos\theta + B\sin\theta$ may be a tangent to the conic $\frac{l}{r} = 1 + e\cos\theta$.
- 24. Prove the identities (i) $\cosh 2x = \frac{1 + tanh^2x}{1 tanh^2x}$ (ii) $\tanh 2x = \frac{2tanhx}{1 + tanh^2x}$ (iii) $\tanh 3x = \frac{3tanhx + tanh^3x}{1 + 3tanh^2x}$
- 25. (a) State and prove Leibnitz's theorem to find the nth derivative of the product of two functions.
 - (b) Find $y_n(0)$ when $y = [x\sqrt{1+x^2}]^m$.

 $(2 \times 15 = 30)$

