Reg. No	***************************************
Nama	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2016

Fourth Semester

FOURIER SERIES, DIFFERENTIAL EQUATIONS NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA

Complementary Course to Physics/Chemistry/Petrochemicals /Geology, Food Science and Quality Control and Computer maintenance and Electronics)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions. Each question carries 1 mark.

- 1. Find the fundamental period of $\cos\left(\frac{2\pi x}{k}\right)$.
- 2. Write the Legendre polynomial of degree n.
- 3. Eliminate the constants a and b from z = (x + a)(y + b),
- 4. Write the Lagrange's partial differential equation.
- 5. Distinguish between an ordinary differential equation and a partial differential equation.
- 6. Find the relative error of the number 8.6 if both of its digits are correct.
- 7. Round off 36.46235 to four significant figures.
- 8. What are the generators of z_4 ?
- Every group G is isomorphic to a subgroup of S_G. Write true or false.
- 10. What are the units of z₁₄?

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

11. Sketch the function:

$$f(x) = \begin{cases} x & \text{if } -\pi \le x \le 0 \\ 0 & \text{if } 0 \le x \le \pi. \end{cases}$$

- 12. Write the Bessel functions $J_0(x)$ and $J_1(x)$.
- Eliminate the arbitrary function f from the equation z = x + y + f (xy).

Turn over

- 14. Find $\frac{\partial (\mathbf{F} \cdot \mathbf{G})}{(y,z)}$ where $\mathbf{F} = ax^2 + by^2 + cz^2 1$, $\mathbf{G} = x + y + z 1$.
- 15. Eliminate the arbitrary function f from the equation z = f(x y).
- 16. Given $u = 5xy^2/z^3$, find $(E_R)_{max}$.
- 17. Obtain a root, correct to three decimal places for $x^3 x^2 1 = 0$ by bisection method.
- Define the term absolute error. If C = 15300 ± 100, find the maximum value of the absolute error in C³.
- Find an approximate root of cos x = 3x 1 using the iterative method.
- 20. Prove that the identity element and the inverse of each element are unique in a group.
- 21. Determine whether ((1, 1, 0), (1, 0, 1), (0, 1, 1)) is a basis for R3 over R.
- 22. Given $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}$. Find $\mu \sigma^2$.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Find the Fourier series for the function $f(x) = x^2$, $-\pi < x < \pi$.
- 24. Show that $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 1)^n \right]$
- 25. Find the integral curves of $\frac{dx}{y(x+y)+az} = \frac{dy}{x(x+y)-az} = \frac{dz}{z(x+y)}$
- 26. Find the general solution of the differential equation :

$$x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=(x+y)\;z.$$

- Find the Fourier cosine series as well as Fourier sine series of f(x) = e^x, 0 < x < L.
- 28. Use the method of false position to a root, correct to three decimal places of $x^3 x 4 = 0$.
- Use the method of iteration to find a positive root between 0 and 1 of the equation xex = 1.
- 30. Let G be a group and let $a \in G$. Show that $H = \{a^n, n \in Z\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
- Show that the set R of all real numbers is a vector space over itself under usual addition and scalar multiplication.

6 × d = 24)

Part D

Answer any two questions. Each question carries 15 marks.

32. (a) Find the Fourier series of
$$f(x) = \frac{x^2}{2}$$
, $-\pi < x < \pi$.

(b) Show that
$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$$
.

- (c) Show that $J'_0(x) = -J_1(x)$.
- 33. (a) Find the partial differential equation of all spheres whose centres lie on the z-axis.
 - (b) Find the integral curves of the equations $\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$.
 - (c) Find the general integral of $z(xp-yq)=y^2-x^2$.
- 34. (a) Use Newton-Raphson method to obtain a root correct to three decimal places $x^3 5x + 3 = 0$.
 - (b) Apply quotient difference method to obtain an approximate root of $x^3 x^2 2x + 1 = 0$.
- 35. (a) Define the permutation group S_3 . Find all subgroups of S_3 and draw the lattice diagram.
 - (b) If V is a vector space over F, show that $0 \alpha = 0$, a0 = 0 and $(-a)\alpha = a(-\alpha) = -(a\alpha)$ for all $a \in F$ and $\alpha \in V$.

 $(2 \times 15 = 30)$