E	61	87
-	-	

(Pages: 4)

Reg.	No
4.2	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017

Fourth Semester

Complementary Course-OPERATIONS RESEARCH-NON-LINEAR PROGRAMMING

[For B.Sc. Mathematics Model II]

(2013 Admission onwards)

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- What is integer programming?
- 2. Define the term pruned in branch and bound method.
- 3. When is a branch and bound method fathomed?
- 4. Who was the first person proposed the method of cutting plane to solve an LL.P?
- 5. What is meant by an optimal solution in an integer linear programming problem?
- Define a convex set.
- 7. Show that $f(x) = x^2$ is a convex function.
- 8. Define saddle point.
- 9. Find $\nabla f(X)$ for the function $f(X) = x_1^2 + 3x_1x_2 4x_1^2 + 4x_1 + 5x_1x_2 x_3^2$.
- Does the intersection of two convex sets convex? Justify.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. What are the disadvantages of cutting plane method?
- 12. Maximize $x_1 + x_2$ subject to $7x_1 6x_2 \le 5$, $6x_1 + 3x_2 \ge 7$, $-3x_1 + 8x_2 \le 6$; x_1, x_2 non-negative integers.

Turn over

- 13. Minimize $f = x_1^2 + x_2^2$ subject to $g = (x_1 1)^3 x_2^2 \ge 0$.
- 14. What is quadratic programming?
- 15. When is a function separable? Check whether the function

$$f(x_1, x_2, x_3) - x_1^3 - 2x_1^2 + 4x_1 + 3x_2^4 - 4x_2 + 5\sin(x_3 + 2)$$
 is separable.

- 16. Write down the Kuhn-Tucker conditions.
- 17. Write the Lagrangian for the problem, minimize $f\left(\mathbf{X}\right) = -x_1 x_2 x_3 + \frac{1}{2}\left(x_1^2 + x_2^2 + x_3^2\right)$, subject to $g_1\left(\mathbf{X}\right) = x_1 + x_2 + x_3 1 \le 0$, $g_2\left(\mathbf{X}\right) = 4x_1 + 2x_2 \frac{7}{3} \le 0$, $x_1, x_2, x_3 \ge 0$.
- 18. Solve graphically maximize $(x_1 4)^2 + (x_2 4)^2$, subject to the constraints

$$x_1+x_2\leq 6,\, x_1-x_2\leq 1,\, 2x_1+x_2\geq 6, \frac{1}{2}\,x_1-x_2\geq -4,\, x_1\geq 0,\, x_2\geq 0,$$

- 19. Formulate the knapsack problem as an ILP. There are n objects, j = 1, 2, ..., n, whose weights are w_j and values v_j . They have to be chosen to be packed in a knapsack so that the total value of the of the objects chosen is maximum subject to their total weight not exceeding W.
- 20. Describe 0-1 problem,
- 21. What is the relation between saddle point of F(X, Y) and minimal point of f(X).
- 22. Write down the general form of the convex programming problem.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Explain branch and bound method.
- 24. Use cutting plane method, Maximize $3x_1 x_2$ subject to $-10x_1 + 6x_2 \le 15$, $14x_1 + 18x_2 \ge 63$; x_1, x_2 integers.

- 25. Use branch and bound method, minimize $9x_1 + 10x_2$, subject to $0 \le x_1 \le 10, 0 \le x_2 \le 8, 3x_1 + 5x_2 \ge 45$; x_2 integer.
- 26. Maximize $2x_1 + 5x_2$ subject to $0 \le x_1 \le 8, 0 \le x_2 \le 8$, and either $4 x_1 \ge 0$ or $4 x_2 \ge 0$.
- 27. Suppose that X_0 be a solution of the convex programming problem, and let X be the set of points with $G(X) \le 0$, be not empty. Prove that there exist a vector $Y_0 \ge 0$ in E_m such that $f(X) + Y_0' G(X) \ge f(X_0)$.
- 28. Find the minimum of $f(X) = (x_1 + 1)^2 + (x_2 2)^2$ subject to $g_1(X) = x_1 2 \le 0$, $g_2(X) = x_2 1 \le 0$, $x_1 \ge 0$, $x_2 \ge 0$.
- 29. Maximize $f(x_1, x_2) = 2x_1 + 3\frac{4}{2} + 4$, subject to $g(x_1, x_2) = 4x_1 + 2x_2^2 \le 16$, $x_1 \ge 0$, $x_2 \ge 0$.
- 30. Use Kuhn-tucker conditions to find the extrema $(x_1-4)^2+(x_2-3)^2$ of subject to $36(x_1-2)^2+(x_2-3)^2 \le 9$.
- 31. Verify the validity of the primal and dual relationship in linear programming on the basis of Kuhn-Tucker conditions.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

32. Use branch and bound method:

$$\begin{array}{ll} \text{Maximize} & 13x_1 + 3x_2 + 3x_3 \\ \text{subject to} & 7x_1 + 6x_2 - 3x_3 \le 8, \\ & 7x_1 - 3x_2 + 6x_3 \le 8; \\ & x_1, x_2, x_3 \end{array}$$

subject to non-negative integers

Turn over

33. Solve the knapsadk problem with the following data, knapsack capacity W=12.

Object	Weight	Value
\boldsymbol{j}	w_j	v_{j}
1	2	10
2	2	14
3	3	18
4	6	48
5	8	80

34. Maximize $f = 4(x_1 - 6)^2 + (x_2 - 2)^2$,

subject to
$$3(x_1+1)^2+6x_2 \le 12, x_1 \ge 0, x_2 \ge 0.$$

35. Solve by the method of quadratic programming

Minimize
$$-6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $x_1 + x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.

 $(2\times15=30)$