Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2014

Fourth Semester

Core Course—VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODS

(Common for Mathematics Model I, II and B.Sc. Computer Applications)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type)

Answer all questions.

A bunch of 4 questions has weight 1.

- I. 1. Find the parametric equation of the line through (1, 1, 1) parallel to z-axis.
 - 2. Find the plane through (0, 0, 1), (2, 0, 0) and (0, 3, 0).
 - 3. Find the unit tangent vector to the curve $r(t) = 6t^3i 2t^3j 3t^3k$, $1 \le t \le 2$.
 - 4. Find the direction in which $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$ increases most rapidly.
- II. 5. Find the gradient of the function f(x, y) = y x at (2, 1).
 - 6. Find the gradient field of f(x, y, z) = xyz.
 - 7. Find the divergence of $F(x, y) = (x^2 y)i + (xy y^2)j$.
 - 8. Write the equation of the parametric formula for the area of a smooth surface.
- III. 9. State Stoke's theorem.
 - 10. If $F = (x^2 y)i + 4zj + x^2k$. Find curl F.
 - 11. If α , β , γ are the roots of f(x) = 0, write the equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$.
 - 12. Form an equation whose roots are the negatives of the roots of $x^3 6x^2 + 8x 9 = 0$.

- IV. 13. If α , β , γ are the roots of $ax^3 + 3bx^2 + 3cx + d = 0$, then what are the roots of $x^3 + 3Hx + G = 0$ where $H = ac b^2$, $G = a^2d 3abc + 2b^3$.
 - 14. Transform the equation $x^3 \frac{5}{2}x^2 \frac{7}{18}x + \frac{1}{108} = 0$ into an equation with integral coefficients and leading co-efficient unity.
 - 15. Find two numbers a and b such that a real root of $x^3 2x 5 = 0$ lies between them.
 - 16. Write the Taylor series expansion of f(x) about x = a.

 $(4 \times 1 = 4)$

Part B (Short Answer)

Answer any five questions. Each question has weight 1.

- 17. Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6.
- 18. Show that curvature of a circle of radius a is $\frac{1}{a}$.
- 19. Integrate f(x, y) = x + y over the curve $x^2 + y^2 = 4$ in the first quadrant from (2, 0) to (0, 2).
- 20. Find the work done by $F = xyi + yj y2\overline{k}$ over a curve $r(t) = ti + t^2j + t\overline{k}$ $0 \le t \le 1$ in the direction of increasing f.
- 21. Evaluate integral $\int_C xy \, dy y^2 \, dx$ where C is the square cut from the first quadrant by the lines x = 1 and y = 1.
- 22. Solve the equation $x^4 12x^3 + 49x^2 78x + 40 = 0$ by removing its second term.
- 23. Solve the equation $4x^4 20x^3 + 33x^2 20x + 4 = 0$.
- 24. Obtain a roof correct to 3 decimal places using bisection method for $x^3 x 4 = 0$.

 $(5 \times 1 = 5)$

Part C (Short Essay)

Answer any four questions. Each question has weight 2.

- 25. Find an equation for the cylinder made by the lines parallel to the z-axis that pass through the parabola y = x², z = 0.
- 26. Show that ydx + xdy + 4dz is exact and evaluate the integral $\int_{(1,1,1)}^{(2,3,-1)} ydx + xdy + 4dz$.
- 27. Find the area of the band cut from the paraboloid $x^2 + y^2 z = 0$ by the planes z = 2 and z = 6.
- 28. Solve by Cardan's method $x^3 15x 126 = 0$.
- 29. If α , β , γ are the roots of $x^3 + Px^2 9x + r = 0$ form the equation whose roots are $\frac{\beta \gamma}{\alpha}$, $\frac{\gamma \alpha}{\beta}$, $\frac{\alpha \beta}{\gamma}$.
- 30. Find the roots of the equation $2x = \cos x + 3$ correct to 3 decimal places by iteration method. $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31. Use Stokes theorem to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F} = xzi + xyj + 3xzk$ and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant, traversed counter clockwise.
- 32. Solve the equation $x^5 5x^4 + 9x^3 9x^2 + 5x 1 = 0$.
- 33. Use Newton-Raphson method to obtain a root correct to 3 decimal places for the equation $4(x \sin x) = 1$.

 $(2 \times 4 = 8)$