Reg.	No

Name.....

C.B.C.S.S. - B.Sc. DEGREE EXAMINATION, APRIL 2011

Fourth Semester

Core Course—VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODS

(For Model I and Model II B.Sc. Mathematics and B.Sc. Computer Applications)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

Each bunch of 4 questions has weight 1.

- Write a parameteric equation for the line through P(-3, 2, -3) and Q (1, -1, 4).
 - 2 If the plane through P(3, 4, -1) normal to the vector n = i j + k has an equation x 2y + 3 = D, then what is D?
 - 3 Find the intercept of $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z}{c}$ on the axes.
 - 4 Give a point of discontinuity of the vector function $g(t) = (\cos t)i + (\sin t)j + [t]k$, where [t] is the greatest integer function.
- II. 5 Find the arc length parameter along the helix $r(t) = (\cos t)i + \sin t j + tk$ from point $t_0 = 0$.
 - 6 Find the gradient field of f(x, y, z) = xyz.
 - 7 State whether the field $F = (2x 3) i zj + (\cos z)k$ is conservative.
 - 8 Find the divergence of $F = (x, y) = (x^2 y)i + (xy y^2)j$.
- III. 9 Find a parametrization fo the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.
 - 10 Find the curl of $F = xyi + zj + y^2k$.
 - 11 If α , β , γ are the roots of $2x^3 + x^2 2x 1 = 0$, then what is the value of $\beta\gamma + \gamma\alpha + \gamma\beta$?
 - 12 Give an example of an equation for which $\alpha = 2$ and $\beta = 3$ are 3-multiple roots.

Turn over

- IV. 13 If $a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n = 0$, then what are the possible values of $\frac{a_0}{a_n}$?
 - 14 If a cubic equation $ax^3 + 3bx^2 + 3cx + d = 0$ is written in the form $y^3 + \frac{3H}{a^2}y + \frac{G}{a^3} = 0$, then what is the value of H?
 - 15 Find two numbers a and b such that a real root of $f(x) = x^3 x 1 = 0$ lies between a and b.
 - 16 In Newton-Raphson method to find the real root of an equation f(x) = 0, what we are replacing the part of the curve between (x₀, f(x₀)) and the X-axis, where x₀ is the initial approximation to a root?

 $(4 \times 1 = 4)$

Part B (Short Answer Type Questions)

Answer any five questions. Each questions has weight 1.

- 17 Find the unit tangent vector of the curve $r(t) = (2 \cos t)i + (2 \sin t)j + \sqrt{5}t k$.
- 18 Find the directions in which $f(x, y) = \left(\frac{x^2}{2}\right) + \left(\frac{y^2}{2}\right)$ increases and decreases most rapidly at the point (1, 1).
- 19 Evaluate $f(x, y, z) = 3x^2 2y + z$ over the line segment C joining the origin to the point (2, 2, 2).
- 20 Find the work done by the conservative field F = yzi + xzj + xyk along any smooth curve C joining the point A(-1, 3, 9) to B (1, 6, -4).
- Calculate the outward flux of the field $F(x, y) = x^2 i + xyj$ across the square bounded by the lines x = 0, y = 0, x = a and y = a, where a > 0 using Green's theorem.
- 22 Solve the equation $x^4 8x^3 + 17x^2 8x + 1 = 0$.
- 23 Transform $x^3 6x^2 + 5x + 12 = 0$ into an equation lacking the second term.
- Write the condition for the sequence of approximations to a real root of an equation f(x) = 0 converges to the required root in the method of iteration.

 $(5 \times 1 = 5)$

Part C (Short Essay Type Questions)

Answer any four questions. Each question has weight 2.

- 25 The surfaces $f(x, y, z) = x^2 + y^2 2 = 0$ and g(x, y, z) = x + z 4 = 0 meet in an ellipse E. Find parametric equations for the line tangent to E at the point $P_0(1, 1, 3)$.
- 26 Find a potential function f for the field F = 2xi + 3yj + 4zk.
- 27 Integrate g(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, z = a.
- 28 If α , β , γ are the roots of $x^3 + qx + r = 0$, find the equation whose roots are:

$$(\beta - \gamma)^2$$
, $(\gamma - \alpha)^2$, $(\alpha - \beta)^2$.

29 Find to five places of decimals a real root of:

$$x^3 + 29x - 97 = 0.$$

30 Find a real root of the equation $\cos x = 3x - 1$ using iterative method.

 $(4 \times 2 = 8)$

Part D (Essay Type Questions)

Answer any two questions. Each question has weight 4.

- 31 Find the area of the surface cut from the paraboloid $x^2 + y^2 z = 0$ by the plane z = 2.
- 32 Prove that every polynomial equation of the n^{th} degree has n and only n roots.
- 33 Obtian a root to 3 decimal places of $x^5 + 5x + 1 = 0$ using Newton-Raphson method.

 $(2 \times 4 = 8)$