Reg.	No

Name.....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2013

First Semester

Core Course-FOUNDATION OF MATHEMATICS

(Common for Model I and Model II B.Sc. Mathematics and B.Sc. Computer Applications)

[2013 Admissions]

Time: Three Hours

Maximum: 80 marks

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

- Find the power set of the set {φ, {φ}}.
- 2. What are the terms a_0 , a_1 , a_2 and a_3 of the sequence $\{a_n\}$ where $a_n = 6\left(\frac{1}{3}\right)^n$?
- 3. What is a reflexive relation?
- 4. What are the equivalence classes of the relation congruence modulo 2?
- 5. Define a lattice.
- 6. Write the negation of "This is a boring course".
- 7. Define a tautology.
- 8. State the fundamental theorem of arithmetic.
- 9. Find the remainder, when 830 is divided by 31.
- Find φ (200), where φ is the Euler's function.

 $(10 \times 1 = 10)$

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. If $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find $A \times B$ and $B \times A$.
- 12. Determine whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 1 is a bijection.

Turn over

- 13. Find the value of $\sum_{i=1}^{4} \sum_{j=1}^{3} ij$.
- 14. List the relations on [0, 1] that contains the pair (0, 1).
- Give an example of a relation on the set of positive integers which is not symmetric but transitive.
 Justify your example.
- 16. Draw the Hasse diagram for the partial ordering {(A, B) | A ≤ B} on the power set P (S), where S = {a, b, c}.
- 17. Show that $\neg (p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
- 18. Find the truth value of $\forall x (x^2 \ge x)$ if the domain consists of (i) all real numbers; (ii) all integers.
- 19. Use a direct proof to show that the sum of two odd integers is even.
- 20. Find the sum of divisors of 540.
- 21. Solve $3x \equiv 5 \pmod{11}$.
- 22. If $2^n \pm 1$ is a prime, prove that n is a power of 2.

 $(8 \times 2 = 16)$

Part C (Short Essay Type Questions)

Answer any six questions.

Each question carries 4 marks.

- 23. For any two sets A and B, prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 24. Show that the function f (x) = ax + b from R to R is invertible, where a and b are constants with a ≠ 0, and find the inverse of f.
- Find the number of reflexive relations on a set with n elements.
- 26. Let S = { 1, 2, 3, 4, 5, 6}. List the ordered pairs in the equivalence relation R determined by the partition A₁ = {1, 2, 3}, A₂ = {4, 5} and A₃ = {6}.
- 27. Express the statement $\lim_{x \to a} f(x) = L$ using quantifiers.

- 28. Use logical equivalences to show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- 29. Prove that every square number is one of the form 5n, $5n \pm 1$.
- 30. If $n \ge 2$ prove that the sum of integers less than n and prime to n is $\frac{1}{2} n \phi(n)$.
- 31. Show that <18 + 1 is divisible by 437.

 $(6 \times 4 = 24)$

Part D (Essay)

Answer any two questions.

Each question carries 15 marks.

- 32. (a) Define the floor and ceiling functions and display the graphs of these functions.
 - (b) Show that the set of odd positive integers is a countable set.
 - (c) Prove that if x is a real number, then $[2x] = [x] + [x + \frac{1}{2}]$.
- 33. (a) Let m > 1 be a positive integer. Prove that the relation congruence modulo m is an equivalence relation on the set of integers.
 - (b) Explain how to use a zero-one matrix to represent a relation on a finite set. Suppose that the relation R on a set is represented by the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

Is R reflexive, symmetric, and/or antisymmetric?

- (c) Define (i) partial ordering; (ii) total ordering. Show that the divisibility relation on the set of positive integers is a partial order but not a total order.
- 34. (a) Explain proof by contradiction and proof by contra position.
 - (b) Prove by contradiction that "if 3n + 2 is odd then n is odd".
 - (c) Give a direct to proof to show that the product of two perfect squares is a perfect square.

- 35. (a) If a and b are any two numbers, prove that there exists a unique number of such that common divisors of a and b are the same as the divisors of g.
 - (b) State and prove Euler's extension of Fermat's theorem.
 - (c) Show that the ninth power of any number is one of the forms 19m, $19m \pm 1$.

 $(2 \times 15 = 30)$