-	-	-	COMM	-
T 17.7		-	45.5	а.э
394		100	B/6	7.8
20.74	-	CORN.	ъи	100

(Pages: 3)

Reg.	No
Nam	.e

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2015

Fifth Semester

Core Course-ABSTRACT ALGEBRA

(Common for Model I and Model II B.Sc. Mathematics)

[2013 Admissions]

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- On Q⁺ define a * b = a/b. Is * a binary operation on Q⁺.
- 2. On Q+ define a * b = ab/2. Find the inverse of a.
- 3. Find the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.
- 4. Q under addition is a cyclic group, Write True or False.
- 5. Define a cyclic group.
- 6. Find the partition of Z_6 into cosets of the subgroup $H = \{0, 3\}$.
- 7. Let $\phi: \mathbb{Z} \to \mathbb{R}$ under addition given by $\phi(n) = n$. Is ϕ a homomorphism.
- 8. What are the units of Z_{14} ?
- 9. G is an ideal in R. Write True or False.
- Define a maximal ideal.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. Prove that the identity element and inverse of each element are unique in a group.
- 12. Describe all the elements in the cyclic subgroup of GL (2, R) generated by the 2×2 matrix $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
- 13. Let G be a group and let $a \in G$. Show that $H_a = \{x \in G/xa = ax\}$ is a subgroup of G.
- 14. Find all orbits of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 2 & 4 \end{pmatrix}$.

Turn over

- 15. Prove that every cyclic group is abelian.
- 16. Exhibit the left cosets and the right cosets of the subgroup 3Z of Z.
- 17. Prove that a factor group of a cyclic group is cyclic.
- 18. Define a normal subgroup of a group.
- 19. Prove that a group homomorphism $\phi: G \to G'$ is a one-to-one map if and only if $\ker (\phi) = \{e\}$.
- 20. Solve the equation $x^2 5x + 6 = 0$ in Z_{12} .
- Show that the characteristic of a subdomain of an integral domain D is equal to the characteristic of D.
- Give an example to show that a factor ring of an integral domain may be a field.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. Each question carries 4 marks.

- 23. Let A be a non-empty set and S_A be the collection of all permutations of A. Show that S_A is a group under permutation multiplication.
- 24. Let H be a subgroup of a group G. For $a, b \in G$, let a b if and only if $ab^{-1} \in H$. Show that is an equivalence relation on G.
- Show that a non-empty subset H of a group G is a subgroup of G if and only if ab ¹∈ H for all a, b∈ H.
- 26. Prove that a subgroup of a cyclic group is cyclic.
- Let H be a normal subgroup of G. Show that the cosets of H form a group G/H under the binary operation (aH) (bH) = (ab) H.
- Let S_n be the symmetric group of n letters and let φ: S_n → Z₂ be defined by :

$$\phi\left(\sigma\right) = \begin{cases} 0 \text{ if } \sigma \text{ is an even permutation} \\ 1 \text{ if } \sigma \text{ is an odd permutation} \end{cases}$$

show that \$\phi\$ is a homomorphism.

- 29. Show that the rings 2Z and 3Z are not isomorphic.
- 30. Let R be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{Z}^+$, show that R has characteristic 0. If $n \cdot 1 = 0$ for some $n \in \mathbb{Z}^+$, show that the smallest such n is the characteristic of R.
- 31. If R is a ring with unity and N is an ideal of R containing a unit, show that N = R.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Prove that every group is isomorphic to a group of permutations.
 - (b) Prove that no permutation in S_n can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
- 33. (a) State and prove fundamental theorem of homomorphism for groups.
 - (b) Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
- 34. Let \$\phi\$ be a homomorphism of a group G into a group G. Show that:
 - (i) If e is the identity element in G, then φ (e) is the identity element e¹ in G.
 - (ii) If $\alpha \in G$, then $\phi(\alpha^{-1}) = \phi(\alpha)^{-1}$.
 - (iii) If H is a subgroup of G, then \$\phi(H)\$ is a subgroup of G'.
 - (iv) If K' is a subgroup of G', then φ⁻¹ [K'] is a subgroup of G.
- 35. (a) Let φ: R → R' be a ring homomorphism with Kernel H. Prove that the additive cosets of H form a ring R/H whose binary operations are defined by choosing representatives. Also show that the map μ: R/H → φ[R] defined by μ(a + H) = φ(a) is an isomorphism.
 - (b) Let R be a commutative ring and let $a \in \mathbb{R}$. Show that $I_0 = \{x \in \mathbb{R} \mid ax = 0\}$ is an ideal of R.

 $(2 \times 15 = 30)$