Name....

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2012

Fifth Semester

Core Course-ABSTRACT ALGEBRA

(Common for Model-I and Model-II B.Sc. Mathematics)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all questions.

Each bunch of four questions has weight 1.

- - 2 Let S be the set of real numbers except -1. Define * on S by a * b = a + b + ab. Find the solution of z * x = 8 in S.
 - 3 What is the order of the symmetric group S, ?
 - 4 Find the order of $\sigma \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ in S_3 .
- Find the number of generators of a cyclic group of order 100.
 - 6 Give an isomorphism from an abelian group G to itself.
 - 7 Find all the left cosets of $2\mathbb{Z}$ in the group \mathbb{Z} of integers under addition.
 - 8 Give an example of a proper nontrivial normal subgroup of Sa.
- III. 9 How many homomorphisms are there from the group Z of integers under addition on to itself?
 - 10 Find the Kernel of the homomorphism $Q: \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$ defined by $f(a) = a + 4\mathbb{Z}, a \in \mathbb{Z}$.
 - 11 Find all units in the ring Q.
 - 12 Find all divisors of zero in the ring Zs.
- IV. State true or false:
 - 13 Every integral domain of characteristic zero is infinite.
 - 14 The characteristics of any field is zero
 - 15 Every ideal in a ring is a subring of the ring.
 - 16 2Z is an ideal of the ring Z.

 $(4 \times 1 = 4)$

Turn over

Part B (Short Answer Type Questions)

Answer any five questions. Each question has weight 1.

- 17 Show that every cyclic group is abelian.
- 18 Show by an example that every proper subgroup of a nonabelian group may be abelian.
- 19 Prove that the identity permutation is an even permutation.
- 20 Define the inner automorphism of a group G induced by the element g in G.
- 21 Define a division ring.
- 22 If R is a ring with unity, then show that this unity 1 is the only multiplicative identity.
- 23 Define factor ring of a ring.
- 24 An element a of a ring is idempotent if $a^2 = a$. Show that an integral domain has exactly two idempotent elements.

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

- 25 Let G be a group and let a be a fixed element of G. Show that $H_n = \{x \in G : x = ax\}$ is a subgroup of G.
- 26 Let A be a nonempty set. Prove that S_A, the collection of all permutations of A, is a group under permutation multiplication.
- 27 Let \(\phi:G \rightarrow G'\), be a group isomorphism. Prove that:
 - (i) $e \otimes = e'$, where e and e' are identity elements of G and G' respectively.

(ii)
$$(a^{-1})\phi = (a\phi)^{-1}$$
.

- 28 State and prove Lagrange's theorem.
- 29 Prove that every field is an integral domain. Also give an example of an integral domain which is not a field. Justify your claim.
- 30 Define an ideal of a ring R. If R is a ring with unity and N is an ideal of R containing a unit, prove that N = R.

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

- 31 If $n \ge 2$, prove that the collection of all even permutations of $\{1, 2,, n\}$ form a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 32 State and prove Cayley's theorem.
- 33 State and prove the fundamental homomorphism theorem for groups.

 $(2 \times 4 = 8)$