B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016

Fifth Semester

Core Course-ABSTRACT ALGEBRA

(Common for Model I and Model II B.Sc. Mathematics)

[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- On Z+ define a * b = a | b. Is * a binary operation on Z+.
- 2. Define a group.
- 3. Is the group < 6z, +> cyclic.
- 4. Every group of order ≤ 4 is cyclic.

Write True or False:

- 5. What is the symmetric group on n letters? How many elements such a group has?
- 6. A subgroup of a group is a left coset of itself. Write True or False.
- 7. Define Kernel of a homomorphism $\phi: G \to G^1$.
- Find all the units of Z₅.
- 9. What is the characteristic of the ring Z_u ?
- Define a prime ideal.

 $(10 \times 1 = 10)$

Part B

Answer any eight questions. Each question carries 2 marks.

- 11. Show that for all $a,b \in G$, where G is a group, $(a*b)^1 = b^1 *a^1$, a^1 denote the inverse of a.
- 12. Let * be defined on the set \mathbb{R}^* of non-zero real numbers by letting $a*b=a\mid b$. Check whether * gives a group structure on \mathbb{R}^* .

Turn over

- 13. Show that if H and K are subgroups of an abelian group G, then $\{Gk \mid G \in H, k \in K\}$ is a subgroup of G.
- 14. If $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $Z = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$. Compute $Z\sigma$.
- 15. Find all orders of subgroups of Zg.
- 16. Prove that every group of prime order is cyclic.
- 17. Compute the factor group $(z_4 \times z_6) | < (0.2) >$.
- 18. Find the number of elements in the cyclic subgroup of Z_{30} , generated by 25.
- Let

 be a homomorphism of a group G onto a group G¹. Show that if G is abelian, G¹ is also abelian.
- 20. Prove that every field is an integral domain.
- 21. Show that the characteristic of an integral domain D must be either O or a prime P.
- 22. Prove that a ring homomorphism $\phi: \mathbb{R} \to \mathbb{R}^1$ is a one-to-one map if and only if $\operatorname{Ker}(\phi) = [0]$.

 $(8 \times 2 = 16)$

Part C

Answer any six questions.

Each question carries 4 marks.

- 23. Let G be a group and $a \in G$. Show that $H = \{a^n, n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
- 24. If G is a group with binary operation *, show that the left and right cancellation laws hold in G.
- 25. Prove that every cyclic group is abelian.
- 26. Show that intersection of normal subgroups of G is again a normal subgroup of G.
- 27. Prove that μ is a maximal normal subgroup of G if and only if G/μ is simple.
- 28. If $\phi: G \to G^1$ is a group homomorphism, show that $\operatorname{Ker}(\phi)$ is a normal subgroup of G.

- 29. If \mathbb{R} is a ring with identify. Show that for any $a,b\in\mathbb{R}$:
 - (i) $O\alpha = \alpha O = 0$.
 - (ii) a(-b) = (-a)b = -(ab).
 - (iii) (-a)(-b) = ab.
- 30. Let N be an ideal of a ring \mathbb{R} . Show that $r = \mathbb{R} \to \mathbb{R} \mid \mathbb{N}$, given by $r(x) = x + \mathbb{N}$ is a ring homomorphism with Kernel N.
- 31. Let $\mathbb R$ be a commutative ring and $a \in \mathbb R$. Show that $I_a = \{x \in \mathbb R \mid ax = 0\}$ is an ideal of $\mathbb R$,

 $(6 \times 4 = 24)$

Part D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Prove that if n≥2, the collection of all even permutations of (1, 2, . . . , n) forms a subgroup of order n 1/2 of the symmetric group S_n.
 - (b) Let G and G^1 be groups and let $\phi: G \to G^1$ be a one-to-one function such that $\phi(xy) = \phi(x) \phi(y)$ for all $x, y \in G$. Prove that $\phi[G]$ is a subgroup of G^1 and ϕ provides an isomorphism of G with $\phi[G]$.
- 33.(a) Let G be a cyclic group with generator a. Prove that if the order of G is infinite, then G is isomorphic to < Z, + >. Also show that if G has finite order n, then G is isomorphic to < Z_n, + n >.
 - (b) Prove that if it is a subgroup of a finite group G, then the order of H is a divisor of order of G.
- 34.(a) Show that every finite integral domain is a field.
 - (b) State and prove fundamental homomorphism theorem for groups.

(b) Show that if $\mathbb R$ is a ring with unity and N is an ideal of $\mathbb R$ such that $N \neq \mathbb R$, then $\mathbb R/N$ is a ring with unity.

 $(2 \times 15 = 30)$