| E    |      | -   | -   |   |
|------|------|-----|-----|---|
| 10.0 | -78  |     | 9.2 | • |
| 100  | C.B. | - 1 | -7  | ~ |
| 2.4  | - 4  |     |     | • |

(Pages: 3)

| Reg. No | <br> |  |
|---------|------|--|
|         | 191  |  |
| Marine  |      |  |

## B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2012

#### Fifth Semester

Core Course-DIFFERENTIAL EQUATIONS

(Common for Model I and Model-II B.Sc. Mathematics and B.Sc. Computer Applications)

Time: Three Hours

Maximum Weight: 25

#### Part A (Objective Type Questions)

Answer all questions.

Each bunch of four questions has weight 1.

- I. 1. Write the condition for M(x, y)dx + N(x, y)dy = 0 to be exact.
  - 2. Find an integrating factor of the equation  $\frac{dx}{dy} + \frac{2}{y}x = y^2$ .
  - 3. Define Bernoulli differential equation.
  - 4. Find the differential equation of the orthogonal trajectories of the family of curves  $y = cx^2$ .
- II. 5. Find the general solution of  $\frac{d^2y}{dx^2} + y = 0$ .
  - 6. Write the UC set of  $x^2 e^x$ .
  - 7. Write the transformation which reduce a Cauchy-Euler equation to a linear differential equation with constant coefficients.
  - 8. Find the Wronskian  $W(x^2, x^3)$ .
- III. 9. Define singular point of a second order homogeneous linear differential equation.
  - 10. The equation  $x^2(x-4)^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + (x-4)y = 0$  has an irregular singular point at x = ----.
  - 11. If p > 0 is not an integer, then the general solution of the Bessel equation of order p is ———.
  - 12. Find  $(D^2 + 1)(D + 2)t^3$ , where  $D = \frac{d}{dt}$ .

- IV. 13. The direction cosines of the normal to the surface z = f(x, y) at the point (x, y, z)
  - 14. Write the second order differential equation  $\frac{d^2x}{dt^2} = f\left(t, x, \frac{dx}{dt}\right)$  as a system of two first order equations.
  - 15. Eliminate the constants a and b from z = (x + a)(x + b).
  - 16. What is Lagrange's partial differential equation?

 $(4 \times 1 = 4)$ 

### Part B (Short Answer Type Questions)

Answer any five questions. Each question has weight 1.

- 17. Solve:  $(3x^2 + 4xy)dx + (2x^2 + 2y)dy = 0$ .
- 18. Find an integrating factor of the equation  $(4xy + 3y^2 x)dx + x(x + 2y)dy = 0$ .
- 19. Find a particular integral of the equation  $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 4x^2.$
- 20. Solve  $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 3y = 0$ , given that x > 0.
- 21. Locate and classify the singular points of  $(x^2 3x) \frac{d^2y}{dx^2} + (x+2) \frac{dy}{dx} + y = 0$ .
- 22. Find the indivial equation of  $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 1)y = 0$ .
- <sup>2</sup>23. Find the partial differential equation of the family of curves  $x^2 + y^2 = (z c)^2 \tan^2 \alpha$ , where both constants c and  $\alpha$  are arbitrary.
- 24. Eliminate the arbitrary function from the equation  $z = xy + f(x^2 + y^2)$ .

 $(5 \times 1 = 5)$ 

### Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

- 25. Verify the exactness and solve the equation  $(y \sec^2 x + \sec x \tan x)dx + (\tan x + 2y)dy = 0$ .
- 26. Solve:  $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$ .
- 27. Solve:  $\frac{d^2y}{dx^2} \frac{dy}{dx} 12y = 0$ , y(0) = 3, y'(0) = 5.
- 28. Apply the method of variation of parameters to solve  $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^3}$ .
- 29. Find the integral curves of the sets of equations  $\frac{a \, dx}{(b-c) \, yz} = \frac{b \, dy}{(c-a) \, zx} = \frac{c \, dz}{(a-b) \, xy}$
- 30. Find the general integral of  $y^2 p xy q = x(z 2y)$ .

 $(4 \times 2 = 8)$ 

# Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

- 31. (a) If M(x, y)dx + N(x, y)dy = 0 is a homogeneous equation, prove that the change of variables y = vx transform the equation into a separable equation in the variables v and x.
  - (b) Solve the equation  $(x^2 3y^2)dx + 2xy dy = 0$
- 32. Solve the initial-value problem  $\frac{d^2y}{dx^2} 2\frac{dy}{dx} 3y = 2e^x 10\sin x$ , y(0) = 2, y'(0) = 4.
- 33. Solve the system:

$$2\frac{dx}{dt} - 2\frac{dy}{dt} - 3x = t.$$

$$2\frac{dx}{dt} + 2\frac{dy}{dt} + 3x + 8y = 2.$$