-	_	-	6	-	-
- 8		64	٠,	7	€.a
A	2	v			U

(Pages: 3)

Reg.	No
	e

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2013

Fifth Semester

Core Course-MATHEMATICAL ANALYSIS

(Common for Model I and II Mathematics and Computer Applications)

Time: Three Hours

Maximum Weight: 25

Part A (Objective Type Questions)

Answer all the questions.

Each bunch of four questions has weight 1.

- I. 1. Find the infimum of $\left\{\frac{(-1)^n}{n}, n \in \mathbb{N}\right\}$.
 - 2. What is order completeness property of R?
 - 3. The set Q of rationals is an open set. True or False.
 - 4. Find the derived set of $\left\{1 + \frac{1}{n}, n \in \mathbb{N}\right\}$.
- II. 5. Give an example of a nowhere dense set.
 - 6. Give an example of a dense subset of R, reals.
 - 7. Give an example of a bounded set having no limit point.
 - 8. State Bolzano Weierstrass theorem for sets.
- III. 9. Find the limit points of $\{S_n\}$ where $S_n = 1 + (-1)^n$, $n \in \mathbb{N}$.
 - 10. Whether the sequence $\{n(-1)^n\}$ converges.
 - Define a Cauchy sequence.
 - 12. Give an example of a sequence which is cauchy.
- IV. 13. State Cauchy's general principle of convergence.
 - 14. Give an example of a monotonic increasing sequence which converges.
 - 15. Show that 1m (iz) = Rez.
 - 16. Express -1 i in exponential form.

 $(4 \times 1 = 4)$

Turn over

Part B (Short Answer Questions)

Answer any five questions.

Each question carries weight 1.

- 17. Show that a set cannot have more than one supremum.
- 18. State Dedekind's property of real numbers.
- 19. If M and N are neighborhoods of a point x, show that $M \cap N$ is also a neighborhood of x.
- 20. Show that set of rational numbers in [0, 1] is countable.
- 21. Show that every convergent sequence is bounded.

22. Show that
$$\lim \frac{1+3+5+...+(2n-1)}{n^2} = 1$$
.

- 23. Show that for any x, $\lim_{n \to \infty} \frac{x^n}{n!} = 0$.
- 24. Prove that $|z_1 + z_2|^2 \le |z_1|^2 + |z_2|^2$.

 $(5 \times 1 = 5)$

Part C (Short Essay Questions)

Answer any four questions. Each question has weight 2.

- Show that the real number field is Archimedian.
- Prove that countable collection of countable sets is countable.
- 27. Prove that interior of a set is the largest open subset in it.

28. Find
$$\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right]$$
.

- 29. Show that a sequence cannot converge to more than one limit.
- 30. Find all values of $(-8i)^{1/3}$.

 $(4 \times 2 = 8)$

Part D (Essay Questions)

Answer any two questions. Each question has weight 4.

- 31. Prove that set of all real numbers in [0,1] is uncountable.
- 32. Prove that $\{r^n\}$ converges if and only if $-1 < r \le 1$.
- State and prove Bolzano-Weierstrass theorem for sequences.
 Is the converse true. Justify.

 $(2 \times 4 = 8)$