B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2013

Third Semester

Complementary Course-Mathematics

VECTOR, CALCULUS, DIFFERENTIAL EQUATIONS AND ANALYTIC GEOMETRY

(Common for Physics, Chemistry, Petrochemicals, Geology, Computer Maintenance and Electronics and Food Science and Quality Control)

(2011 Admission onwards)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions.

Each bunch of four questions carries a weight of L

- 1. 1. Give an example of a discontinuous vector function.
 - 2. Find the unit tangent vector of the helix $r(t) = \cos t i + \sin t j + t k$.
 - 3. Define torsion of a smooth curve.
 - 4. Find the direction in which $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$ increases most rapidly.
- II. 5. Find the gradient field of g(x, y, z) = xy + yz + xz.
 - 6. Show that $F = (2x-3)i 2j + (\cos z)k$ is not conservative.
 - 7. Find the curl of $F(x, y) = (y^2 x^2)i + (xy 2y)j$.
 - 8. State Green's theorem.
- III. 9. Is the equation $(\cos x x \cos y) \frac{dy}{dx} = \sin y + y \sin x$ exact.
 - 10. Write the general form of a first order linear equation.
 - 11. What are integrating factors.
 - 12. Write an integrating factor of $ydx xdy + (x^2 + y^2)dx = 0$.

- IV. 13. Write the equation of the ellipse in standard form whose foci are $(0, \pm 4)$ and vertices $(0, \pm 5)$.
 - 14. Write the eccentricity of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
 - 15. Which conic is represented by the equation $x^2 + 2xy + y^2 + 2x y + 2 = 0$.
 - 16. Write the polar equation of the hyperbola with eccentricity 3/2 and directrix x = 2.

 $(4 \times 1 = 4)$

Part B

Answer any five questions. Each question has weight 1.

- 17. Find the principal unit normal N for the helix $r(t) = a \cos t \, i + a \sin t \, j + bt k$, $a, b \ge 0$, $a^2 + b^2 \ne 0$.
- 18. Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of A = 3i 4j.
- 19. Evaluate $\int_C (x-y+z-2) ds$ where C is the straight line segment x=t, y=1-t, z=1, from (0,1,0) to (1,0,0).
- 20. Calculate the outward flux of the field $F(x, y) = xi + y^2j$ across the square bounded by the lines $x = \pm 1$, $y = \pm 1$.
- 21. Solve the equation $y = 2px + y^2p^3$.
- 22. Solve the equation $\frac{dy}{dx} + y \cot x = e^x$.
- 23. Find the center, foci, vertices and asymptotes of the hyperbola $\frac{(x-2)^2}{16} \frac{y^2}{9} = 1$.
- 24. Describe the motion of a particle whose position p(x, y) at time t is given by $x = a \cos t, y = b \sin t \ 0 \le t \le 2\pi$.

 $(5 \times 1 = 5)$

Part C (Short Essays) Answer any four questions. Each question has weight 2.

- 25. Find the tangent plane and normal line of the surface $f(x, y, z) = x^2 + y^2 + z 9 = 0$ at the point (1, 2, 4).
- 26. Evaluate $\int_{-1}^{0} \int_{-1}^{1} (x+y+1) dx dy$.
- 27. Find the center of the mass of a thin shell of constant density δ cut from the cone $z = \sqrt{x^2 + y^2}$ by the planes z = 1 and z = 2.
- 28. Find the integrating factor and solve the equation $(x \cos y y \sin y)dy + (x \sin y + y \cos y)dx = 0.$
- 29. Sketch the parabola $(y+2)^2 = 8(x-1)$. Plot the vertex, focus and directrix.
- 30. Rotate the co-ordinate axes through an angle α to remove the xy term from the equation $2x^2 + \sqrt{3} xy + y^2 10 = 0$. Find α and identify the new curve.

 $(4 \times 2 = 8)$

Part D

Answer any two questions. Each question has weight 4.

- 31. Use Stoke's theorem to calculate the circulation of the field $F = 2yi + 3xj z^2k$ around the curve $C = x^2 + y^2 = 9$ in the xy plane, counterclockwise.
- 32. (a) Solve the equation (px y)(py + x) = 2p.
 - (b) Solve $4\frac{dy}{dx} y \tan x + y^5 \sin 2x = 0$.
- 33. (a) Find a polar equation of the conic with $e = \frac{1}{2}$, one focus at the origin and directrix x = 1 corresponding to that focus.
 - (b) Describe the motion of a particle whose position p(x, y) at time t is given by $x = \sec t$, $y = \tan t$, $-\pi/2 < t < \pi/2$.