373	63	63	O	PY.
E	J	Z	Ö	-

(Pages: 2)

Reg. No	
Name	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2014

Third Semester

Complementary Course—Physics-QUANTUM MECHANICS, SPECTROSCOPY, NUCLEAR PHYSICS AND ELECTRONICS

(For Chemistry and Geology)

[2013 admissions]

Time: Three Hours

Maximum: 60 Marks

Candidates can use Clark's tables and scientific non-programmable calculators.

Part A (Short Answer Questions)

Answer all questions.

1 mark each.

- 1. State the conditions to be satisfied by a wave function to be well behaved one,
- 2. Give the statement of Heisenberg's uncertainty principle.
- 3. What is meant by spatial quantization?
- 4. Diatomic molecules such as CO, HF will show a rotational spectrum where as N_2 , O_2 , H_2 will not. Why?
- 5. What are the limitations of Bohr atom model?
- 6. Define binding energy per nucleon. What is its significance?
- 7. What is the principle of atom bomb?
- 8. What are the two biasing modes of PNI junction?

 $(8 \times 1 = 8)$

Part B (Brief Answer Questions)

Answer any six questions. 2 marks each.

- 9. The photoelectric effect cannot be explained on the basis of electromagnetic wave theory. Why?
- 10. What do you understand by the term eigenvalue and eigenfunction?
- 11. How is the fine structure of spectral lines accounted?
- 12. Give the quantum theory of Raman Effect.
- 13. What is electric quadrupole moment?
- 14. What is meant by radioactive carbon dating?

Turn over

- 15. Explain the features of liquid drop model.
- 16. Briefly explain the production of energy in stars.
- 17. How the potential divider method helps in the biasing of a transistor?
- 18. How can a zener diode be used in a voltage stabilizer circuit?

 $(6 \times 2 = 12)$

Part C (Problems /Derivations)

Answer any four questions. 4 marks each.

- 19. Find the kinetic energy of a proton whose Broglie wavelength is 1 fm.
- The ground state energy of Hydrogen atom is -13.6 eV. Find the orbital radius and velocity of the electron in a Hydrogen atom.
- Find the energy release, if two, H² nuclei can fuse together to form He⁴ nucleus. The binding energy per nucleon of 1H² and 2H² e⁴ is 1.1MeV and 7.0 MeV respectively.
- Calculate the fission rate for U²³⁵ required producing 2W and the amount of energy that is released
 in the complete fissioning of 0.5 kg of U²³⁵.200MeV energy is released per fission of U²³⁵.
- In a negative feedback amplifier the open loop gain is 100, β = 0.04 and input voltage = 50mV.
 Find (a) Gain with feedback; (b) Out put voltage; (c) Feedback factor; (d) Feedback voltage.
- 24. Obtain the mutual relationship between the current amplification factors α , β and γ of a transistor.

 $(4 \times 4 = 16)$

Part D (Long Answer /Problem Questions)

Answer any two questions. 12 marks each.

- 25. Discuss in detail the Davisson-Germer experiment.
- 26. Explain the rotational spectra of a rigid diatomic molecule.
- 27. Describe the properties of the nucleus.
- 28. What is a full wave bridge rectifier? Explain the working of it with a neat diagram. Obtain the expression for its efficiency.

 $(2 \times 12 = 24)$