T-1	76	per	63	m
H :	-1	5	72	
		v	Suil	

(Pages : 2	2	
------------	---	--

Reg.	No
22	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Core Course-EQUILIBRIUM AND KINETICS

(Common for B.Sc. Chemistry Model I, Model II, B.Sc. Petrochemicals, B.Sc. Chemistry Environment and Water Management)

[2013 Admissions]

Time: Three Hours

Maximum Marks: 60

Part A

Answer all the eight questions. Each question carries 1 mark.

- 1. State Zeroth law of thermodynamics.
- 2. What is meant by state function?
- 3. Explain the term partial molar free energy.
- 4. Write Van't Hoff equation.
- 5. Explain the term congruent melting point.
- 6. What is triple point?
- 7. What is pseudo-order reaction?
- 8. Write Eyring equation ?

 $(8 \times 1 = 8)$

Part B

Answer any six questions.

Each question carries 2 marks.

- 9. What is a spontaneous process? Explain.
- 10. Derive the relation between Cp and Cv for an ideal gas.
- 11. What are the conditions for the chemical equilibrium to exist.
- Differentiate between extensive properties and intensive properties.
- Sketch and label the phase diagram for water system.
- Discuss tie line and lever rule in the phase diagram of two component system.
- 15. Discuss the effect of a catalyst on the rate of a reaction. How can the action of catalyst can be explained.

Turn over

- 16. Write a short note on consecutive reaction.
- The rate constant for the second order reaction is 8 × 10⁻⁵ M⁻¹ min⁻¹. How long it will take for a 0.1 m solution to be reduced to 0.05 m.
- 18. Integrate the rate expression for a first order reaction.

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. Explain the phase diagram of ferric chloride-water system.
- 20. Derive the rate law for the Hydrogen-Bromine reaction using steady state approximation.
- 21. Explain Lindemann theory.
- 22. Describe Carnot heat engine and calculate its efficiency.
- 23. Deduce Gibbs-Helmoltz equation. What are its applications?
- 24. Obtain the expressions for the entropy changes of an ideal gas in :
 - (a) An isothermal process.
 - (b) An isobaria process.

 $(4 \times 4 = 16)$

Part D

Answer any two questions. Each question carries 12 marks.

- 25. Describe the Van't Hoff reaction isotherm.
- 26. Write short notes on:
 - (i) Internal energy.
 - (ii) Heat energy.
 - (iii) Equilibrium constant.
 - (iv) Gibbs free energy.
 - (v) Inexact differentials and path functions.
 - (vi) Criteria for spontancity.
- 27. (a) Explain the transition state theory.
 - (b) The rate constant of a second order reaction is 5.7×10^{-5} dm³/mol/s at 25° C and 1.64×10^{-4} dm³/mol/s at 40° C. Calculate the activation energy and the Arrhenius pre exponential factor.
- 28. Two components A (melting point 0° C) and B (melting point 25° C) form two compounds X and Y melting congruently. X melts at 49.5° C and contains 40 mole percent B while Y melts at -39° C and contains 60 mole percent B. There are three eutectic points at -51° C, 28 mole percent B; -63.5° C, 48 mole percent B and -49.4° C, 66 mole percent B. Construct phase diagram and determine the formula of X and Y.

 $(2 \times 12 = 24)$